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ABSTRACT

A new methodology is described for the design of nonlinear
dynamic controllers for nonlinear multivariable systems providing
guarantees of closed-loop stability, performance, and robustness. The
methodology is an extension of the Linear-Quadratic-Gaussian with
Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus
hinging upon the idea of constructing an approximate inverse operator
for the plant. A major feature of the methodology is a unification of
both the state-space and input-output formulations.

In addition, new results on stability theory, nonlinear state
estimation, and optimal nonlinear regulator theory are presented,
including the guaranteed global properties of the extended Kalman
filter and optimal nonlinear regulators.
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CHAPTER 1. INTRODUCTION

1.1 Overview

1.1.1 Motivation

The feedback control systems that we buiid and operate today are
exceedingly complex and nonlinear in théir operation. Even our best
efforts at modeling these systems can produce only low order
nonlinear models that describe the behavior of the system over some
limited operating regime. Frequently, we often generate even
simpler, linear models of these systems, valid in some even smaller
operating regime. We then apply methods that have been developed for
controlling linear systems. Engineers succeed at applying these
methods in the real world because frequently the region of desired
operation is within a region of approximate linearity. Even if this»

is not the case, we can sometimes alter specifications to shrink the

region of operation; virtually any system will behave almost linearly
if not pushed too hard. We are then justified in modeling a real
world system by a linear one and applying linear theories and design
methodologies to it.

However, as we build faster and more complex dynamic feedback
systems (e.g. aircraft, robots, reactors, etc.), we find that this
method does not suffice. As we begin to demand higher performance

from our systems, we begin to require something more than linear
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models and theories. We begin to require a nonlinear control system
design theory that we can apply to the nonlinear models we must
derive.

Current approaches to this problem are ad hoc in nature: the
péoblem is broken down into several linear ones, with linear theory
uséd on each piece. Then all the linear controllers are combined
into one global nonlinear controller for the original system.
Unfortunately, this method, called gain-scheduling, comes with no
guarantees. There is currently no sound theoretical basis for
gain-scheduling, and while there have been some successes, problems
have been reported in high performance designs. Generally, it has
been successful when the system is not pushed too hard, i.e. changes
regimes slowly.

This thesis describes an approach without these drawbacks. It
describes a methodology for the control of nonlinear systems in which
a nonlinear dynamic compensator is designed directly, with no
intermediate linearization and combination steps. It has turned out
that, in addition to being a more aesthetically appealing approach,
this technique guarantees several desirable properties for the

nonlinear closed-loop system on a sound mathematical basis.

1.1.2 Contributions of the Thesis
The approach presented here is an extension of the Linear-

Quadratic-Gaussian with Loop Transfer Recovery (LQG/LTR) methodology
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for linear systéms [1,2.3j. which has been recently developed. We
call the extension the Nonlinear—Model-Based-Compensator with
Loop-Operator-Recovery (NMBC/LOR) methodology.

Fortunately, many of the results in the linear case can be
extended to the nonlinear case with little or no conceptﬁal change.
The methodology outlined here is hoped to be the start of4a complete

prescription for designing control systems for nonlinear systems,

providing
(a) guaranteed closed-loop stability,
(b) adequate robustness margins, and
(c) design parameters which can be to adjusted so that

performance meets desirable specifications.

In addition, one of the philosophical contributions is the
framework handling both state-space based optimization methods and
input-output (I/0) analysis methods. Perhaps this will lead the way
to more techniques that utilize the best each method has to offer,
rather than limiting techniques to only on method.

In chapter 2, basic analysis tools are developed for feedback
systems. In section 2.3, basic stability results are presented,
including internal stability definitions and results and the
incremental stability theorem (showing that incremental stability is
equivalent to uniform stability of sets of linearized systems). In

section 2.5, closed-loop stability robustness tested are presented,

allowing one to determine the robustness of proposed loop operators.
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In chapter 3, a very significant result is presented, that of
the nondivergence of the extended Kalman filter (EKF) for every
detectable plant. This is an important result by itself, as it
justifies the use of the EKF for probléms where estimation is the end
goal itself, ﬁithout feedback control. In section 3.4.3, guaranteed
properties of sblutions of certain optimal control problems are
presented, generalizing previously known results.

Finally, in chapter 4, the NMBC/LOR methodology is presented in
its entirety, with full details.

The development of a unified multivariable nonlinear feedback
control design methodology will allow engineers to control systems
with much higher performance than current knowledge allows. Global
stability guarantees are reassuring, considering the problems
encountered by some gain-scheduled designs. Also, certain systems
may be so highly nonlinear in all operating regions that
linearization based methods offer little hope. Thus it is hoped that
the results presented here will be a suitable starting point for a

complete methodology useful for practical implementation.

1.1.3 Organization of the Thesis

The thesis is organized into 6 chapters. Chapter 2 covers the
analysis of feedback systems. Chapter 3 covers the synthesis of
stabilizing control systems. This is done by a separation result
(section 3.2) allowing the combination of good estimators (section
3.3) and good state-feedback controllers (section 3.4). Chapter 4

details the entire NMBC/LOR methodology, including all three
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variations. Chapter 5 presénts the résults of numerical simulations
carried out to test and evaluate the NMBC/LOR techniques on a simple
nonlinear pendulum problem. Chapter 6 contains the conclusions and
suggestions for future research. The appendices contain two fairly
long proofs, details on a promising new observer, the properties of
optimal filters, some factorization ideas, and information on s;ate

feedback servos.

1.2 Previous Work and Related Literature

In the literature there appear no complete nonlinear control
methodologies, in the sense that they are applicable in general to
truly nonlinear systems without having all states available for
feedback. This section will provide an overview of the background
results and control schemes that are available. In addition, an
overview of the fairly complete linear theory (LQG/LTR) will be given

as a basis for the extensions presented throughout this thesis.

1.2.1 Background theory

The research reported in this thesis draws on several basic
feedback theories to provide the machinery and framework for our
results.

For stability, input-output (I/O) concepts will be used
extensively. The orginal work by Zames [4] and Sandberg [5] dealing
with a fairly general nonlinear feedback system provided the
groundwork for other I/0 stability results (including Safonov [6].

Willems [7], Desoer and Vidyasagar [8]). The most general results so
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far have been Safonov’s [6]. in which stability and robustness
conditions are formulated in terms of sectors and cones in function
spaces. The work reported here is closest in spirit to [6].

In addition to the 1/0 concept of stability, *e also will be
using Lyapunov concepts (H;hn [9]. Krasovskii [10]., Vidyasagar [11],
and others) to help us tie i/O concepts to the state space. The
relationship between Lyapunov and I/0 stability has been discussed in
Willems [12], Hill and Moylan [13], Vidyasagar and Vannelli [14]. and
Bodson and Sastry [15].

In the area of performance analysis, the work of Desocer and Wang
[16] generalizes some of Bode’'s [17] original feedback equations to
the nonlinear case. The concepts involve relations between loop gain

and command following errors, with suitable definitions.

1.2.2 Nonlinear Control Schemes

An ad hoc technique which has been used with some success in
aircraft and aircraft engine control is gain-scheduling. in which the
nonlinear plant is linearized at several operating points and linear
controllers designed for each operating point. Then the parameters
of the controllers or compensators are scheduled on the basis of some
measured variables, as the system changes operating regions.
However, there are no a priori guarantees whatsoever as to system
stability, robustness, or performance, and some problems have been

noted when high performance gain-scheduled designs have been

-
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attempted in recent studies (Kapasouris-[IS]. Pfeil [19], and Lively
[20]). A solid theoretical treatment of gain—scheduied designs is at
present lacking.

Safonov [6] presents conditions under which linear gains in a
nonlinear controller will stabilize a nonlinear system, but they are
basically bounds on the amount of nonlinearity allowed. In addition,
[6] does not address any performaﬂce issues, as well as the issue of
what to do if the linear gains do not work.

The work on external linearization of Meyer and colleagues
[21,22,23, et al], by Isidori [24], and Krener, Isidori, and
Respondek [25] shows much promise. They seek transformations of
state variables and input coordinates that convert a given nonlinear
system to a linear one, thus allowing the application of conventional
methods. The method is still in its infancy since it requires full
state.feedback and issues of robustness, performance (command
following and disturbance rejection), and dynamic compensation when
all state-variables are not available for measurement have not yet
been addressed. In addition, not all systems can be linearized in
this fashion [22]. A procedure related to external linearization,
called nonlinear decoupling, is déscribed in {76,77, et al], in which
the goal is to reduce (or remove) the coupling of certain pairs of
inputs and outputs. There is also a dual procedure to external
linearization for designing state estimators (Krener and Respondek
[26]) which turns ﬁut to be a more difficult proposition. However,

if these techniques are able to generate controllers by combining
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state féedback and observers, the results reported in this thesis
will be applicable and useful. We discuss these results in sections
3.3.6 and 3.4.5.

Another proposed nonlinear stabilization scheme is the
Q-parameterization of Desoer and Lin [27] and Anantharam and Desoer
[28], in which the set of controllers stabilizing a given nonlinear
plant is suitably parameterized. One drawback to this technique is
that the method works only on open-loop stable plants, or on ones
that have already been stabilized by some sort of feedback. In
addition they do not address the issues of robustness, perfomance, or
implementation. In section 4.3.4, we use the ideas of
Q-parameterization in our formal loop shaping procedure.

Yet another proposed control scheme is the describing function
method, in which the plant is converted to a set of linear models,
one for each "operating point”. Here "operating point"” refers to a
specific amplitude and frequency of input signal, rather than a point
in the state-space. A linear controller is then designed for each
"operating point” and the resulting set of controllers is converted
to a nonlinear controller through an inverse describing function
procedure. This method has much in common with the gain-scheduling
procedure and currently has the same drawbacks, namely, no guarantees
as to stability, robustness, or performance. Papers on this method
using sinusoidal-input describing functions (SIDF) are Taylor [29]
and Taylor and Strobel [30]. A similar linearization technique that
generates just one linear model from the nonlinear system using

random-input describing functions (RIDF), called Nonlinear Quadratic
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Gaussian (NQG) control, is described in Beaman [31]. Describing
function ideas may prove useful in the posing and checking of

specifications, as we describe in section 2.6.

1.2.3 Linear Multivariable Control Theory

At the start of the research presented in this thesis, LQG/LTR
was chosen as the linear multivariable control‘system design
methodology most likely to be extendable to the nonlinear case. It
has turned out that virtually all results from the linear theory can
be carried over, with only slight changes. This is perhaps a sign of
the ease with which future results may be generated.

The LQG/LTR methodology is explained in Doyle and Stein [1], and
Stein and Athans [2]. In the LQG/LTR methodology, all robustness and
performance specifications are translated into the frequency domain,
using singular vaiues [3]. which are the multivariable generalization
of the classical Bode plots. Once these specifications have been
posed, one then designs a "target loop” transfer function which meets
these specifications. In LQG/LTR, the target loop is usually
designed using optimization theory (the Kalman filter) in order that
it have several built-in good properties.

Since the target loop is not a realizable controller by itself,
the next step is to modify a special LQG compensator such that the
loop transfer function asymptotically approaches the target loop

shape. The final compensator is chosen as one that gives an actual
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loop sufficently clése to the target loop over the frequency range of
interest, resulting in a final closed-loop system that meets the
posed specifications.

In addition to this organized procedure, there are a number of
techniques that can be used to help generate a desi;able target loop
transfer function, allowing a reasonable amount of cbntrol over the

properties of the final closed-loop system.

1.3 Introduction to the NMBC/LOR Methodology

This section will present a simplified discussion of the
methodology proposed in this thesis, termed the Nonlinear Model-
Based—-Compensator with Loop-Operator-Recovery methodology. There are
three variants of the NMBC/LOR technique discussed in chapter 4, but
we will discuss them collectively in general terms in this section.

One of the major features of NMBC/LOR is an attempted
unification of state-space based optimization methods with
input-output analysis. We use state-space techniques for synthesis
because gains can be calculated most easily in that framework.
However, unmodeled dynamics cannot be captured with state-space
models, and it is here that I1/0 methods are most useful; we use I/0
methods for analysis.

The steps to design a control system for a particular plant are

as follows:

-19-




Step 1  (Modeling): Develop a model for the plant as a
finite-dimensional nonlinear differential équation. As part of the
modgling process develop bounds for the error between the actual
plant and the model. Such errors are called unmodeled dynamics. The
reasons for the discrepancy between the actual plant and the model

are (1) unknown dynamics, or (2) known but neglected dynamics.

Step 2 (Specifications): Convert all specifications into
specifications on the loop operator, which is either the plant
cascaded with the compensator, or the compensator cascaded with the
plant, depending on the variant of LOR being useq. The results in
chapter 2 will show us that the loop operator is the important

quantity in determining performance and robustness.

Step 3 (Target Loop): Deterﬁine a target loop operator that meets
all of the specifications of step 2. This target loop operator will
generally be in a special form, namely a state-feedback loop or a
filter loop, as will be discussed in chapter 3. It will be possible
to choose this target loop operator in such a way that good

robustness and performance properties are guaranteed.
Step 4 (NMBC Construction): Build a Nonlinear Model Based

Compensator that guarantees that the closed-loop system will be

stable. Chapter 3 discusses the procedure for this.
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Step 5 (qup Operator‘Recovery)= Adjust key parameters in the NMBC
Vdesign process according to the reéults of chapter 4, and, with
certain technical restrictions, the actual loop operator will
approach that of the target loop operator. Use one of these limiting
compensators as the final design, so that the loop operator is‘
virtually the same the target loop operator. The final design tﬁen

meets all of the original specifications.

Remark 1 In the LOR procedure of this last step, the actual loop is
forced to look like the target loop. This is done by the compensator
creating an approximate inverse for the plant and substituting the
target loop in its place. Since we desire the final closed-loop
system to be closed-loop stable, we must do this in an intelligent
manner. For instance, this means making sure that the equivalent of
right-half-plane pole-zero cancellations are avoided. Additionally,
we see that if the plant were linear, we would have to rule out
right-half plane zeros in the plant, as the compensator would not be

able to cancel them as other dynamics.

Remark 2 The LOR procedure that we will present in this thesis is
practicable: we will present a well-defined algorithm for ensuring
the above LOR process. In addition, we will reject certain
algorithms as being computationally too difficult (e.g. the optimal
filter in section 3.3.2) and thus arrive at concrete algorithms that

are within the reach of current technology.
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This completes the outline of the NMBC/LOR procedure. The rest

of the thesis is devoted to developing all of these ideas in detail,

with mathematically precise results.
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1.4 Notation

IA].0p [A]

[A]

o_.
min

P
T
xll
P

xl
P

N(x,y)
®

#(t.T)
A>B (A2B)
AT T

P

K

T

"is defined as”

The identity matrix or operator

The zero matrix or operator

The real number§

space of ordered n-tuples of real numbers
The non-negative real numbers

The gradient matrix of the function g:RnHRm
The Euclidean norm of the vector x, e.g (x'rx)ll2
The maximum singular value of the matrix A

The minimum singular value of the matrix A

signal space with elements of finite p-norm
extended signal space = (x=R,%=Rn| Hme’T { o Y1€R,}
trunc;tion operator

p—norm of signal x(+) as a member of ¥

truncated p-norm of signal x(+), = HPTpr

see section 2.2

plant dynamics operator = [S-1 - F]—l

state transition matrix for a linear time-varying system
the matrix A-B is positive (semi)-definite

the transpose of the matrix A or vector x

the plant operator

the compensator operator

the loop operator
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CHAPTER 2. ANALYSIS: STABILITY, PERFORMANCE & ROBUSTNESS

2.1 Introduction

In order to design good feedback systems we must first
understand what properties a "good"” feedback system should have.
This chapter presents this information on the basic definitions and
techniques that we will be using for the analysis of multivariable
nonlinear feedback loops. We start in section 2.2 with the
definition of our plant model and basic concepts. Section 2.3 then
concentrates on the issue of stability, including closed-loop
equations, incremental stability, and the relationship between
input-output (I/0) stability and Lyapunov (or zero-input) stability.
The analysis development is continued in section 2.4, where the
command following and disturbance rejection performance-of a feedback
system is analyzed, and in section 2.5, where tests for stability
robustness with respect to unstructured unmodeled dynamics are
presented. Finally, the chapter concludes in section 2.6 with a

discussion of the issues involved in actually carrying out some of

these tests.

-

We will try to parallel the linear system theory [1,2,3]
development as much as possible to give the reader more of a feeling
for the analogy between results for linear and nonlinear systems. In

addition, we will endeavor to use the same notation wherever

possible.
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2.2 Models and Basic Definitions

in this section we define the model of the plant to be
controlled and our definitions for norms, stability, etc. We will
also present the operator notation for the description of dynamical
systems and associated notation.

We first define the so called design plant model that we shall
use. The design plant model will be the model used to apply the
NMBC/LOR methodology in chapter 4 and includes all scaling,
normalizations, and augmented dynamics, such as integrators, as
discussed in section 4.4. Our design plant model will be described
by

x(t)
y(t)

f(x(t)) + Bu(t);: x(0) =0 (2.1a)

C x(t) (2.1b)

where x(c)em“ is the state, u(t)emm is the input, and y(t)emm is the
output. B is an nxm matrix and C is an mxn matrix. We assume that
the nonlinearity £:R°-R" is at least twice continuously

differentiable, with f(0)=0, and we will usually assume that there

exists M, such that

f
IvE(x)]| ¢ Mf for all x€R® (2.2a)
3¢, (x)

———| < M, for all xeR”, 0< i.j.k < n. (2.2b)
axjaxk
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In (2.1) the initial condition for the state is zero. In general
this is how we will deal with differential equations from an
input-output viewpoint. If the system fs coﬁtrollable, then clearly
we can access all possible behavior of (2.1) by first traveling to a
desired state, then starting our observation. When we use Lyapunov
techniques, we will use a nonzero initial condition for the plant
model; section 2.3 contains results relating the two formulations.

The model (2.1) is more general than it might appear, for
suppose we had a system

z

g(z.v) (2.3a)
y = h(z) (2.3b)
with v the input to the system. Through a change of state variables,
it will usually be possible to make the output map h linear. The
simplest way to do this is to make the first part of the transformed
state vector, x, be y and the rest be whatever states are needed to
make up a complete state vector. Then the new system (with the same
input-output characteristics) will have a linear output map. Now, if
we add integrators at the input to (2.3), i.e. define a new control
input u so that Vv = u, we will have transformed the system (2.3) into
the form (2.1). Since augmenting a system with integrators is almost
always done to improve low frequency performance and to ensure Zzero
steady-state errors to step commands and/or disturbances, the model
(2.1) can actually be used to handle a very wide class of original
models (2.3). Some of the results presented in this thesis do not
require that the input and output maps be linear, but their linearity

will be assumed here to simplify equations as wéll as allow all the
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results to apply to a specific model (2.1). It fill usually be clear
from the proof of a result whether linearity is required for that
specific theorem.

In addition to the description (2.1) for the model, we must
include a description of model uncertainty. We will represent model
uncertainty by unstructured unmodeled dynamics, for which we will
assume that we have an I/0 bound of some type. Section 2.5 has
details on this topic.

We now consider the I/0 viewpoint for systems, in which a system
is thought of as rule for mapping inputs into outputs. Here inputs
and outputs are entire signals, i.e. trajectories, not just elements

of Rn.

Ve call a set of signals a signal space, and a rule for
mapping one signal space into another is an operator. Since we want
to be able to make quantitative statements, we need a way of
assigning sizes to these signals (elements of a signal space). One

way to do this fs by the use of norms.

Definition For 1{p<{w, we define the p-norm of a signal xtm#%mn

1/
Ml = [J: Ix(t)|P dt ] p. (2.4)
For p=% we use
ixli , = sup Ix(t)]. (2.5)
t
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These definitions of course are not finite for all functions x:R,aRn.
We will restrict the signals on which we apply these norms as
follows.

n

Definition Qp is the set of all signals x:R,-R" for which Hx(t)"p

is finite, i.e.

" = {x:m.am“ | IxH_ < + o } (2.6)
P P

In functional analysis, values of p are usually considered for the
full range [1,#]. In this thesis we will be concerned primarily with
the cases for p=2 and p=®. Since we restricted the set 2;. it is not
quite large enough to deal with all of our system theory questions
because it does not include any signals that "blow up”, or grow
without bound. Without these types of signals, we cannot discuss
unstable systems, and thus stability itself remains inaccessible. To
be able to han&ie these growing signals, we must extend the set 82 by
the following mechanism. For more details see [4,6,7,8].

Definition The truncation operator PT is defined by its operation

on an arbitrary signal x:R+ﬂRn as
._ ] x(t) if t ST
(Px)(¢) := { 0 ift>7 (2.7)

Definition The extended space 23 e is the set of signals whose

truncations lie in Qn. i.e.

g;'e = { x:R,R" | Px € wg VT>0}. - (2.8)
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We will frequently drop the superscript n, as the dimension of the
underlying-vector space is usually quite apparent. In addition, we
will want exclude some signals with very bizarre nonphysical

behavior. For example, consider

174 t <1

x(t)= { -2 . (2.9)

which goes to infinity at t=0 and in addition (believe it or not)
belongs to !2. We eliminate this type of annoyance by only
considering the set & e for the rest of this thesis. For

simplicity, we will define the set & := ¢ e As a note to the

mathematically sophisticated reader, we will not be concerning
ourselves with the behavior of signals on sets of zero measure, as
this does not affect smooth‘physical systems.
Remark The above mathematics is just one possible way to utilize
the concepts of extended spaces and so on. In fact, extensions to
discrete time systems are quite easy [4,6]. We restrict ourselves
here in order to give a more concrete flavor, reduce technical
restrictions, and to tie results to the state-space domain.
The operator description.of a nonlinear system is simply a

mapping P:4-#. For example, we write

y = Pu; u,y€e (2.10)
to mean that the input u produces the output y. Remember that u and

n
y are not points in R but are entire trajectories in R™, i.e.
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elements of ¥. The value of the response of the system P to the
input u at time t is given by

y(t)=(Pu)(t). ' (2.11)
We will assume that PO=0 for all operators we will be considering.
This does not cause any loss in generality, as the O input response
can be dealt with separately. We define the addition and composition

of operators in the expected way:

(A+B)u Au + Bu (2.12)
ABu := A(Bu) (2.13)
We are now able to extend the notion of size to signals in ¢ and

to operators:

Definition The truncated Lp—norms of x€¥ are

‘ T p 1/p
lellp,‘r = IIPTxllp = [le(t)l dt] ; plo (2.14a)
ixlly, = NP xN, = sup |x(t)! (2.14b)
* o<t&r

Definition The Lp—norm. or gain, of an operator (system) is

lIPull
HPHp = sup . (2.15)

lhall
pP.T

where the supremum is taken over all u€¢ and all 7>0. If the type

(i.e. p) is not specified, then results hold for all p-norms,
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consistently throughout a discussion. In words, the gain is
thelargest possible amplification in signal size that can be achieved
over all possible inputs. Similarly, we have

Definition The Lp—tncremental gain of an operator is

"-Pui-PU2 " T
WPN_ , := sup P (2.16)
P, I —uall

» T

where the supremum is taken over all u,,u,€¥ and all T>0.
Definition An operator (system) P is Lp—stable if it has finite
gain, i.e. HPHp { +o,
Definition An operator P is Lp-tncrementally stable if it has
finite incremental gain, i.e. IlPllp’A { +o,

Note that a system P is stable if and only if there exists a
constant k such that

WPull_ < K full_ : Vu€g,TeR, (2.17)

and that the smallest such k is the gain lIPIl of the system.

Remark We define stability here because there is no standard
definition. Other possibilities include using some increasing
function instead of a linear gain k in (2.17). and not requiring the
output to have zero norm when the input is zero. Note that in the
time-invariant linear case the types of stability above are all

equivalent to the standard one.
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As we will occasionally have need to discuss the size of the

n+m

vector z=(x,y), with z€R . x€R", yGRm. or the signal z=(x,y) with

&nﬂn

z ., xe¢™, yewm, we clarify the issue by defining:

ley) | = [ x1? + Iy)% 112 (2.18)
Hxay)ly - i= [ uxufT + ayn2_ 1l/2 (2.192)
ey, o = W, o+ dyll, (2.19b)

Technically, this last definition is not consistent with the

definition of a signal given previously, in the sense that if

z=(x,y)., we have

Nzlly = H(x.y)lly | (2.20)
but only
hzlly, _ = sup |z(t)]| < H(x.y)H (2.21)
’ tsT T

with equality not guaranteed in general. To fix this we would have
to redefine the norm of a vector in R" Just for the L case.
However, this is not worth it because the definition given above is

sufficient for our purpocses, since

Hzﬂm.T 4 H(x,y)"w'r < 2 Ilzllm'_r (2.22)
and we are generally just concerned with the existence of bounds, not

their exact value.

We make one more shorthand notational definition:
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Definition The closed-ball Bh is defined as the set

B, := { xeR® Ix| <h}. (2.23)

h
To simplify equations, we will now define a special nonlinear

operator ¢ by the mapping from w to x given by
x(t) = f(x(t)) + w; x(0) =0 (2.24)

and shown in the block diagram of figure 2-1. If we let F be the

nondynamical operator defined‘by

(Fx)(t) := f(x(t)) (2.25)
and S be the integral operator, we can write

-1 -1

¢ :=[S ~ - F] (2.26)
We can now see the usefulness of ¢; our plant (2.1) can now be
written in compact form

y = Pu; P = C¢B ] (2.27)
This operator representation of our plant will be very useful
throughout the rest of the thesis. Note that for (2.27) to hold,

neither B nor C need be linear.
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L = me—" — — — wwm—— — a———

The ¢ Operator

Figure 2-1:
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All of the preliminary mathematics has now been covered and we .
are ready to go on with the analysis of nonlinear systems. In

particular the next section will discuss stability in more detail.

2.3 Stability and Feedback

In this section we investigate the issue of stability more
closely. We start in section 2.3.1 with a derivation of the closed
loop equations for a feedback system, using operator notation. In
section 2.3.2 we then examine the issue of internal stability, a very
important issue for the implementation of a control system. In
section 2.3.3 the relation between certain types of Lyapunov
stability and I/0 stability is detailed. Finally, in section 2.3.4
incremental stability is examined in detail. Incremental stability
will turn out to be an important ingredient in the synthesis of state

estimators.

2.3.1 The Closed Loop Equations

We now examine the use of operators for analyzing closed loop
feedback systems. Consider the closed loop system of figure 2-2,
where we have a plant P and compensator K with a command input r,
input disturbance w, and a output disturbance, d. This arrangement is
certainly not the most general possible; we could for instance have
the compensator inputs include the measured signal y and the
reference signal r directly, instead of just their difference. We
choose this framework because it happens to fit the results that come

later, as well as the fact that it is a good starting point for
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Closed-Loop System

Figure 2-2:
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discussion. In addition, the results of [32] indicate that such a
structure is reasonable in the sense that if the system shown in
figure 2-2 can be stabilized, then a "stable'factorization" 6f the
plant exists. We show in the appendix how the existence of a
stabilizing state feedback function (see sections 3.2 and 3.4) is
related to the idea of factorization.

Continuing to analyze the configuration of figure 2-2 we make
the following definition:

Definition The operator PK is called the loop operator broken at
the plant output. (-K)(-P) is the loop operator broken at the plant
input. The word "broken” is optional.

The terminology should be clear by analogy with the linear
systems case. We will frequently use the terms loop operator or
loop; when it is clear from the context which loop we mean. Letting
T=PK be the laop broken at the plant output, the loop equations for
figure 2-2 when w=0 are

e=r-d-Te (2.28a)

y=d+Te (2.28b)

Assuming I+T invertible, we can write

[1+T] 7} (r-a) (2.29)

d+ TLI+T] L (r-4). (2.30)

<
]
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The question of invertibility of I+T is relatively easy to answer
here. We basically require T to have no "instantaneous gain"; our
plant model (2.1) guarantees this. [7] has ; very detailed
exposition of this concept.

We can thus see that the stability of the closed loop system

when w=0 depends only on the stability of [I+T]_1. since
-1 -1
TLI+T] * =1 - [I+T] ". (2.31)

The situation when w is nonzero is somewhat more difficult. For
instance, we have assumed nothing in the above discussion that would
rule out the analog of pole/zero cancellations in the
right-half-plane. Thus we really have not guaranteed any sort of
practical closed-loop stability by making [:I+T:|m1 stable. fhe type
of thing we need is an extension of the closed-loop matrix used [33]
in the linear situation in which both [I-!-F'K]—1 and [I+KP]--1 are
required to be stable. We can do that by the following definition,
modified for command following from [6].

Definition The system in figure 2-2 will be said to be closed-loop
stable if the mapping (w.d.r)»(y.,u) is stable. Because d and r are
added together in this configuration, this is easily shown to be
equivalent to the stability of either of the mappings (with d=0)
(w.r) » (e.v) (2.32)
(w.r) » (y,u). (2.33)
In sections 2.4 and 2.5 we will examine the closed loop system

~ performance and robustness in terms of the loop operators.
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2.3.2 Internal Stability

Suppose that we have a system P that 1s.stab1e but we are
concerned about internal stability, that is, whether or not the
insides, or states, of the system are stable. More precisely:
Definition A system P described by (2.1) is internally stable if

the mapping u»x is stable, i.e. there exists a constant k such that
IIxII,r <k IIuII_r V u€sL, T€R,. (2.34)

For linear systems, one can have I/0 stability without internal
stability only if the system has pole-zero cancellations in the right
half plane and thus is unobservable and uncontrollable. This
situation can be éyoided. as any realistic model that we want to
control should be both observable and controllable, or at least
stabilizable and detectable (the minimum required for closed-loop
stability). In analogy with the linear case, we therefore define one
possible way to rule out such behavior.

Just for the remainder of this section, we will associate a
particular realization with a system P. That is, think of P as a
label for the set of equations (2.1). This slight abuse of notation
will save us the trouble of saying "a particular realization of P,
given by equation (2.1)" instead of just "P".

Definition We shall say PE€¥D (for Set of Detectable plants) if

there exist constants k, and k, such that
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HxHT < k,HyHT + kzﬂuHT Y u€<g,TeR,. (2.35)

The reason that this is a useful definition is that the ¥9 property
is retained under feedback and guarantees that we will have internal
stability if we have stability. We will show in section 3.2 that if
estimators can be built for P, then Pe¥®. The set SD is related to
the concept of observability of other researchers [12,78]. The

following are some easy results:

Theorem 2.1

(a) If Pe¥D then P[I+P]_1€99. where P|:I+P]-1 is realized in the
expected way, i.e. u=u,-y, where u; is the new input.

(b) If P€YD and P is stable then P is internally stable.

(c) If P is internally stable then P€¥®.

Proof

(a) Let Pe¥®. The closed loop configuration gives y = P(u,-y)

so that

xll < ko Myl + kpltug-yll_

< (kutka)liyll + koltugll_:  VreR, (2.36)

and therefore the closed loop system P[I+P]—1€9@.
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(b) Let P be stable and P€¥%. Then
lell_r £ k,HyHT + kzﬂu"T : VTER,
< (kHPH + kz)HuHT; VT€R. (2.37)
and therefore P is internally stable.

(c) Simply pick k,=0. | |

From this list of properties, it appears that the set 9% is
quite useful. Membership in the set guarantees that internal
stability is gotten for free with stability. Property (a) guarantees
that if we design a compensator to stabilize a system so that the
open loop dynamics are in Y9, the closed loop will also be in 99 and

thus ensure internal stability.

2.3.3 Lyapunov and 1/0 Stabiiity

In this section .we discuss the relationship between Lyapunov and
I/0 stability. The basic references for this section are
[12,13,14,15]. We will present the results in their most general
form so they will be most applicable throughout the rest of the
thesis. In general, we will be concerned about the relationship

between the I/0 behavior of the system

% = f(x,u,t); x(0)=0 (2.38)

and the zero input behavior of

x = f(x,0,t); x(O):xo. (2.39)
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We assume that f is locally Lipshitz, i.e. there exist closed balls

Bh’B R™, and constants Mf’Mu such that for all xi.xzeBh, ui.uzeBe
lf(xx-ux-t)“f(xz-uz:t)l < Mf |Xi'x2| + Mu |u1—u2|; Vt20. (2.40)

This guarantees the local existence and uniqueness of solutions to

(2.38) and (2.39). The following is a theorem from [15].

Theorem 2.2 Let f be locally Lipshitz as above (2.40) and assume
thét x=0 is a stable equilibrium point of (2.39), i.e. £(0,0,t)=0 for
all t20, and there exists a ball B6CBh such that, for all xoeBé.
to20, and t2tg, x(t)€Bh along solutions of (2.39) starting at xq.
Then the following statements are equivalent:

(a) x=0 is an exponentially stable equilibrium point of the

Cmn

system (2.39), i.e. thére exist a, M, such that for all xoeBh

tozo-

Ix(€)] < M x| e ®(t7t0) | yeye,. (2.41)

(b) there exists a function v(x,t), and constants a;,.a,05,0,

such that for all x€B6. t20,

a12|x|2 € v(x,t) ¢ a22|x|2 (2.42)
dv L8 ¢ —ag|x]? (2.43)
|_(_lv x.t | < aslx] . (2.44)



Fur thermore, (a) implies the requirement of stability of the origin

and thus implies (b) without that a priori requirement.

Remark This theorem is known as one of the converse thereoms of
Lyapunov function theory [9.10]. The function v is a Lyapunov
function for the system (2.39); from Lyapunov theory, if such a
function exists'the system is Lyapunov stable, i.e. the state tends
to zero. The theorem states that if v obeys some asymptotic
properties (2.42-2.44), the stability is exponential. Note that not
every Lyapunov function for (2.39) will obey (2.42-2.44), even if the
system is exponentially stable; however, there will exist at least
one with such properties.

We are now ready to state a theorem which relates exponential

Lyapunov stability to I/0 stability, modif&ed slightly from [14,15].

Theorem 2.3 (Small-Signal Stability) Suppose that x=0 is an
exponentially stable equilibrium point of (2.39) and that the
Lipshitz condition (2.40) holds. Then system (2.38) is small-signal
Lp-stable, i.e. for all p€[l,=], there exist constants 1p and c such

that whenever x(0)=0, and |u(t)|$c°° Vt, we have that

nxll
p

EEGA - (2.45)

Furthermore, the constants are given by
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«© u az;ag

7, = 7@‘% ; p(w | (2.47)

¢y = min {e. —— min {h.5}}, (2.48)
(-]

where properties (2.42-2.44) hold in BG'
This result shows that if we can prove some things in the state
space framework (Lyapunov stability) we can translate those results
to the 1/0 domain. There are results [12] that discuss the converse
of this theorem, which we will not present rigorously as they will
not be needed later. Roughly, they say that a reachable
(controllable) and observable realization of an 1/0 stable system is
globally asymptotically stable and bounded. Thus, it appears that
the concepts of zero-input Lyapunov, or state stability, are quite
closely related to the concept of I/0 stability, once we remove
anomalies like uncontrollable and uﬁobservable states. This is
intuitively pleasing, since the two notions come from widely

different viewpoints.

2.3.4 Incremental Stability

Incremental stability is related to the concept of continuity on
signal spaces. The output of an incrementally stable system changes
by an amount not more than proportional to the change in the input
signal. In equations, it says that there exists a k such that for

any two inputs u, and up, the respective outputs y, and y, must obey
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"yi"Y2"_r S k “ui-UZ“T A TelR., (2.49)

Consider the situation where u, and u, are very close to each other.
This should remind us of small-signal linearization and we would

expect that the concepts are related. They are.

Theorem 2.4 Let vf obey the restriction (2.2). Let the nonlinear
system x=Pu be described by
x(t) = f(x(t).t) + u(r). (2.50)
Then P is L  incrementally stable i.e.
HPu,—Puzﬂw'T <k Hu,-uzﬂm'T Vu, ,u€%,TER, (2.51)

if and only if the linearized system va described by

E(t) = vwf(x(t).t)E(t) + w(t) . (2.52)
is uniformly L -stable for all possiBle trajectories x€¥, i.e.
H§Hm'T €k Hwﬂw’T; V weL,T€ER, (2.53)

for all possible trajectories x€¥.
Proof See appendix A.

Remark This theorem requires that the B matrix in both the
linearized and nonlinear equations be the identity. We could do away
with this restriction if we used some notion of controllability, so
that all the behavior of the system could be accessed through the B
matrix. This is related to the exponential stability of the previous

section, in which stability with an identity B matrix was guaranteed.
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This theorem will be very useful in the next chapter where we
will show that filtering is tied closely to the notion of incremental
stability. There we will extend this theorem somewhat to cover the

L2 case, because of the properties of the extended Kalman filter.

2.4 Closed-Loop Performance

This section will analyze the performance of the closed-loop
system of figure 2-2. The loop operator T=PK was briefly discussed
in section 2.3.1. Here we judge tﬁe performance by how well the
system follows commands and rejects disturbances, i.e. by how small

e=r-y is. "For this case, we set w=0. Let

Hy, i= TLI+T] "} (2.54)

be the map from r to y in the closed-loop system, when d=0. Then, as

derived in section 2.3.1
y=d+H (r-d) (2.55) ;
Theorem 2.5 [16] If, for all r€%CY® and for all d€acy
-1
N[I+T]™ (r-d)ll_ << Nr-dll_; VTeR,, (2.56)
then e = r~y 2 0 on % and 9 in the sense that

"eHT = Ilr—yllT <« Ilrll_r + HdHT; Vre€R,d€d, T€R, . . ‘ (2.57)
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Proof See [16]

Remark 1 This theorem shows the linearizing effect of high gain
feedback (an identity map is linear). It is a generalization of the
original work of Bode [17] for linear systems, and can be stated in a
much more general way, where instead of unity feedback as in figure
2-2, there is an operator F [16]. In that case, the conclusion for
high gains is, as expected, that HyrgF-l.
Remark 2 The sets % and 9 are analogous to frequency ranges in the
linear theory situation, but present more of a problem. The test
(2.56) must be checked for every signal in the sets % and 9; we are
not so lucky as to have all the signals of a given frequency but
varying amplitudes give the same behavior. The basic idea in using.
theorem 2.5 is to think of % and 9 containing the signals for which
good command following and disturbance rejection are desired.
Typically, these will be all the "low frequency” signals. Section
2.6 will discuss these issues in more detail.
Remark 3 Theorem 2.5 also shows that we selected a useful
definition for stability, because we have the result that our
stability with high gain produces small errors, which is a
fundamental requirement.

We can use theorem 2.5 to relate the error magnitude to the open

loop gain, as in the self-explanatory result:
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Theorem 2.6 Let u = [I+T]-1x. Then

+177? | ull
"[1"3 = = II[;:;HuII g m—fw
T T T T .
[ rat, ]'1 2.58)
Trall_ ' :

Thus we see that we can relate the size of the sensitivity (or
error) operator, [I+T]_1. to the size of the open-loop gain. The
engineering rule-of- thumb which tells us that we need a loop gain

of, say, greater than 100 for errors of less than 1% still applies.

2.5 Closed-Loop Stability Robustness

This section will investigate the issue of stability robustness.
Roughly speaking, stability robustness refers to the amount of
perturbation that a nominally stable closed-loop system can withstand
and still be guaranteed stable. We want to be able to check that our
closed-loop designs are robustly stable, and if they are not, would
like some help in redesigning them so that they are in fact robust
with respect to closed-loop stability.

In the following thecrems, we will be assuming that we have a
nominal loop operator, T, that we know to be closed-loop stable,
along with a particular characterization of the actual loop ’I‘A in

terms of the modeling error, E. Obviously, we never really know what

the actual loop TA is, and that is the whole point of the robustness
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tests: If we can bound the error somehow, then we may be able to
guarantee the closed-loop stability of the actual system, without

kRnowing T, explicitly.

A
Theorem 2.6 (Robustness Tests)
(a) (Additive Error) Suppose that T is closed-loop stable, i.e.

[I+’I‘]—1 is stable, and

TA =T + E. (2.59)
Then TA will be closed-loop stable if there exists a 0<6<1 such that
IlEullT () H(I+T)uHT; Yu€¢¥, T€R, . (2.60)

(b) (Division Error) Suppose that T is closed loop stable and
T, = T(I+E) L. (2.61)

Then TA will be closed-loop stable if there exists a 0<{6<1 such that

IIEuIIT & "(I+T)uHT; Yu€d, T€R, (2.62)
and

IEN < o, (2.63)

(c) (Subtractive Error) Let T be closed-loop stable,

-1 -1

E=T, -T . (2.64)

let ET be stable, and let the set ¢ be defined by

% := {x = Tu | uez }. (2.65)
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Then TA will be closed-loop stable if there exists 0<6<1 such that

NETull < & N(I+T)ull_;  Vueg,TeR,, (2.66)
or

NEull_ < & N(I+T )ull_: vues, TeR, . (2.67)

(d) (Multiplicative Error) Let T be closed-loop stable,
TA = (I+E)T, (2.68)

and the set ¥ be defined by
% = {x = Tu | ue¢ } (2.69)

Then TA will be closed-loop stable if there exists 0<6<1 such that

either

IETull < W(I+T)ull ;  Vuee,TeR,, (2.70)

or

NEul_ < N(I+T )ull_:  Vues,eR, . (2.71)

Figure 2-3 gives an interpretation of the error E for each of
these representations {(a-d). In each case, the dashed box represents

the actual plant TA for each definition of the error E.
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Figure 2-3: Robustness Tests
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Proof
(2) Il(I+'I‘)ulI_r = II(I+TA—I:‘.)u|l_r < H(I+TA)uHT +.llEullT

< H(I+TA)uHT + 6 H(I+T)u"1; Yu€y, T€R, . (2.72)
Thus

H(I+T)u" < 1= 6 H(I+T )u“ ; Yu€<,T€R,. (2.73)
Since T is closed-loop stable, there exists an e>0 such that
n(I+1) " v ¢ Lo (2.74)
T " e T
and letting u=(I+T)—1v. we have

e lull_ < N(I+T)ull_; Vues,TeR,. (2.75)

'Combining (2.73) and (2.75): °

3 HuH H(I+TA)uH ; Yu€g, T€R, (2.76)

<15
50 TA is closed-lcop stable with gain

nLT+T, 171N ¢ (T%ET npI+T] " (2.77)
(b) TA will be closed-loop stable if the following has finite gain:

[1+T, 370 = [T+ T(+E) ™17 = [(1+EeT) (14E) 170

i = (I+E)(I+E+T) L. (2.78)
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Applying theorem 2.6a, T+E is closed-loop stable and so
-1 1 -1
H[I+TA] < (1+lEN) 15 NLI+T] "N < o, (2.79)

(c) Since TA=[E+'I‘-1]“1 = T[ET+I]_1, we can apply the division error

to conclude that T, will be closed-loop stable if ET is stable and

A
(2.66) holds. Letting x=Tu, we get the second result (2.67). The

gain is
(1)t ¢ BRI yprery~ha, (2.80)
(d) Since
T, = (I4E)T = T + ET (2.81)

we can apply the additive error test (theorem 2.6a) to conclude that

TA will be closed-loop stable if

HETu"T <6 H(I+T)uHT; Yu€Y, T€R, . (2.82)
Letting x=Tu, this will be true if

IIExllT <56 H(I+T-1)xHT; Vx€%;.T€R,. (2.83)

The gain is

T )™ ¢ e nemy . B (2.84)
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Remark 1 These robustness tests are similar to the frequency domain
singular value tests used for linear systems [3]. For example, if
T(s) is a closed-loop stable transfer function matrix and

TA(s)=T(s)[I+E(s)]—1. then TA(S) will be closed-loop stable if
amax[E(jw)] < amin[I+T(jw)]: V w€R. (2.85)

Compare this to Eheorem 2.6b. Note that, as in the performance tests
of section 2.4, we must check conditions for all signals in some
"large"” set instead of just along the real line (2.85). We will
discuss this issue in more detail in the next section.

Remark 2 The incremental versions of these robustness tests are
very similar and are proved the same way. They say that if the
nominal loop-is incrementally closed-loop stable, and the error is
incrementally bounded in a certain sense, then the actual system will
be closed-loop incrementally stable.

We first present an example of how to use these tests.

Theorem 2.7 (2-norm bounds in frequency domain) Let H be a stable

linear operator and H(jw) its Fourier transform. Then if Illull

2<%
NHull, < WHull, < szp [H(jw) ] ltull,, (2.86)
and ~
IHull, _ N
HI, = sup ——=— < sup |H(jw)]. (2.87)
2 Y1
- u€ed 2,71 w

T€R,
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Proof Using Parseval’'s theorem,

1}

HHuH22 J: [H(jo)a(jo) |2 do

¢ sup JH(jo) Prun?, (2.88)
W
the rest follows from definitions. B

Remark In general, the bounds involving |H(jw)| cannot be satisfied
with equality unless |H(jw)| is constant for all w where u(jw) is

nonzero.

Theorem 2.8 (Multivariable Gain and Phase Margins) Suppose we have
a system that we know to be closed-loop stable and its loop operator
T satisfies

N[I+T]ully, _ > e; Vuee,7eR,. (2.89)

Then the closed—-loop system has the following margins, in each

channel:
. 1 1
Gain Margin: (7 1=2)
-1 52
Phase Margin: o] < cos "(1- 5—),

that is, representing the linear operator L by its Fourier Transform

L(jw), with L(jw) = diag {ei(jm)}. i=1,...,m, and for all i, either
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1
£,(0) = 2, € (pv 7o) (2.90)

or

1

’ 2
Iei(jm)|=1, |angle ei(jm)l < cos (1-%—), (2.91)

then TL will be closed-loop stable. See figure 2-4.

Proof Since the L we will be contemplating is linear (gains and
phases only), we can use theorem 2.7 to convert the error into the

frequency domain. We use theorem 2.6b and conclude that the system

will be closed-loop stable if, for &<1,

-1
I[L™" = ITully < 6 N[I+TJull, i Vue2,TeR,, (2.92)

or, by (2.89) if

0Lt - 1dm, < e (2.93)

Using theorem 2.7, we require

WL~ (j0) - I70 < e, (2.94)
or for gain:
e < (g, - <e (2.95)
1 1
1< > ei > Tre (2.96)

v

For the phase, let 8 be the angle of phase shift of ei(jm). Then
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Figure 2-4:

Robustness Test Application
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sup [ed® - 1] < e (2.97)
w
and )
|sin29 + (cos @ —1)2| < e2 (2.98)

|2 - 2cos 8] < 2. . (2.99)

2.6 Compﬁtation of Tests

The actual computation of the nonlinear performance and
robustness tests covered in this chapter is a rather difficult issue
that will require much additional research. In this section, we will
comment on a few possibilities for actully performing these tests in
a practical manner.

The typical test that we are discussing is of the following
form: Let the set ¥C£ be a given subset of a signal space ¥. Then
we must check to see if

a(x) < B(x):- V x€4. (2.100)
If the set 4 were more like R, then our course of action would be

clear. We would evaluate (2.100) on some smaller set, say the set

{ ne | n=-M,-M+1,...,0,1,2,3,...

.
< 4
—~
~
N
ol
O
ok
o

where we select ¢ to be small enough to "cover" all the behavior of
the function a(+), and M is picked large enough to "cover" the

max imum rangé expected to be of significance. We would be justified
in doing things this way if a(+) were smooth enough so tha§ we did
not miss any behavior that "fell through the net"”. The analogous

situation for the (2.100) would be to find some managable, smaller
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set #C$ that we could actually calculate (2.100) for. Then, if a
were smooth enough, and the members of % were close enough together,
we would not miss any behavior. We would thﬁs like to find the set
B, together with a theorem that we could prove, saying in effect,
that if (2.100) held on %, it would be true on all of $. This is the
principle that we use all the time for the set of real numbers, and
it seéms likely that it can be done, albeit caréfully. for signal
spaces.

One possible solution to this problem is to learn a trick from
describing function theory [29,30]. In describing function theory,
the set 3 is usually taken to be a collection of sinusoids at

different frequencies and amplitudes, i.e.
% = { Asin ot | A€[-M,M], w€[w,.w.] } (2.102)

and performance and stability are judged on the basis of the set %.
Now, stability is a much more complex (and delicate) issue, and while
it may be possible to prove some theorems for stability of the type
alluded to above, this has not been done yet. However, the
performance and robustness issue may be more tractable. Perhaps one
could check performance be a grid of signals, with amplitude in one
direction and magnitude in the other.

Another issue along similar lines is the actual posing of
specifications. Since it would be impractical to specify B in
(2.120) for eacﬁ x€G, we need a more compact way of specifying B.

Again, perhaps describing function theory could be of help. For
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example, we might specify performance/robustness for a control system

as the sets in which A and w must lie for x=Asinwt:

Bxl_ > 20 ¢ 2rad/sec, A> 20 (2.103a)
Bxl > 10 o 2 rad/sec, A< 20 (2.103b)
Bl ¢ © > 40 rad/sec. | (2.103¢)

How one comes up with such a specification is a very complex issue in
its own right which we will not address here.

Another possible way of posing specifications is to use a
“"chirp”, or swept sine-wave signal. This type of signal, which
consists of a constant amplitude sine-wave with a frequency that
increases exponentially in time, might allow one to look at the .time
response of, say, the sensitivity operator, and interpret its
envelope as a frequency response. Section 5.6 demonstates this idea
on a nonlinear pendulum example.

We are now in a (theoretical) position to evaluate a given loop
operator when presented with it. The next two chapters will deal
with the issue of synthesis: How do we design a compensator to give

a loop operator that will test "good" using the techniques presented

in this chapter?
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CHAPTER 3.  SYNTHESIS: ESTIMATION AND CONTROL

3.1 Introduction

In chapter 2, we studied the analysis of a given feedback loop
in terms of its stability, robustness, and performance. The purpose
of this chapter is to present methods for actually constructing a
compensator to.achieve closed-loop sfability‘for a given plant model.
The issues of performance and robustness will be covered in chapter
4. This chapter is structured as follows. Section 3.2 discugses the
separation principle‘that allows us to break the problem of
stabilization into two pieces: estimation and control. Section 3.3
discusses specific estimators with emphasis on the extended Kalman
filter and the guaranteed properties that it possesses making it
useful for control system design. Similarly, section 3.4 discusses
state feedback controllers with emphasis on the guaranteed properties
possessed by the solution to certain optimal control problems, and

their relevance to feedback loop properties.

3.2 Separation of Estimation and Control

The separation principle to be presented in this section allows
us to separate the stabilization problem into two parts that can each
be tackled separately. This provides the justification for the
estimation and control approach to control system design, in which

-

the compensator contains a state estimator and state feedback gain.
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Consider the linear situation first. There we design a Kalman
filter to estimate the state of a linear system given the output
observations, and a state-feedback gain that would stabilize the
system if the state were available for direct measuremeﬁt. For

example, consider

x(t) = A x(t) + B u(t) (3.1a)
y(t)

C x(t) (3.1b)

with the Kalman filter

X(t) = A x(t) + B u(t) + H[y(t) - Cx(t)] (3.2)

and state-feedback
u(t) = - G x(t) . ©(3.3)

One of the most fundamental results of linear system theory is that
the closed-loop eigenvalues of such a system are the eigenvalues of
the Kalman filter and the closed-loop eigenvalues that would result
from the exact state being used instead the estimated state. Thus,
the closed-loop eigenvalues are

Ai[A—BG]: i=1,2,...,n (3.4)

and

A [A-HC]: i=1.2,...,n. (3.5)

v

Thus we see that if (a) the filter produces "good” estimates, and (b)

the state-feedback would stabilize the system itself, then the
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combination stabilizes the linear system (3.1). See figure 3-1.
While the usual proof of this result relies on the assumed linearity
to decouple the closed-loop equations, the result is by no means
restricted to the linear case.

In order to generalize this result, we first need to define a
"good" estimator. The terminology used here is due to [6,43].

Definition x=F(y,u) is a nondivergent estimate of the state x of

x(t) = £(x(t)) + Bu(t) + Bw(t) (3.6a)

y(t) = Cx(t) + d(t) (3.6b)

if the mapping (w,d)»e:x—; is stable uniformly in u. Here F is the
dynamic operator representing the estimator with inputs y and u, and
w and d are disturbances that are considered deterministic (but of
course unknown to the estimator). To be more precise, we say that
the estimator is nondivergent with respect to a specific norm if the
mapping (w.d)2e is stable with respect to that norm.

Definition If there exists a nondivergent estimator ;=F(y.u) for
(3.6). then we say that the system (3.6) is detectable.

We can now state and prove our main separation result:

Theorem 3.1 (Separation Theorem [6]) If g(+) is a stabilizing
state-feedback function, i.e. if

x(t) = £(x(t)) - Bg(x(t)) + Bw(t) (3.7)

is stable wpx, and

sup |vg(x)| < » (3.8)
X
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‘ Figure 3-1:

Separation of Estimation and Control
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and if x=F(y,u) is any nondivergent estimate of x, then

x(t) = £(x(t)) - Bg(x(t)) + Bw(t) (3.9)

is stable (w,d)»x. Here we mean stability with respect to the same

norm used for the stability of (3.7) and for the nondivergence of the

state estimate x.
Proof The closed-loop system is
x = £(x) - Bg(x) + Bw = f(x) - Bg(x) + B(g(x)-g(x)+w). (3.10)

Since g(x) stabilizes the system, there must exist a k, such that

Hxll_ < kg lg(x)-g(x)+wll_ < k1IVg|°"x—xHT + kyllwll_; VTeR, . (3.11)
Since F is a nondivergent estimator, there must exist k, such that
le--xllT < kzﬂ(w,d)HT: VTER, (3.12)
and so
HxHT < k,lvglkzu(w.d)HT + k,HwHT; VTeR,, (3.13)

and so the system is closed-loop stable. ||
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Remark 1 This theorem now allows us to design separately a
stabilizing state-feedback function and a nondivergent estimator,
with the knowledge that we can put them together and be guaranteed a
closed-loop stable system. Note that the stability is not just from
a singlé input, but from both "inputs"” (w,d) simultaneously. This
guarantees that there will be no unstable hidden modes in the
closed-loop system, i.e. it rules out the analog of right-half plane
pole-zero cancellations between the compensator and plant in linear
systems. This is required (and sufficient) to allow a practical
command following system to work. This is the approach that will be
taken in this thesis.

Remark 2 1In the linear case, the stochastic optimal control
(Linear-Quadratic-Guassian, or LQG) problem solution [50] decouples
~into an optimal estimation problem and an optimal state-feedback
control problem, sometimes refered to as the certainty equivalence
property. We do not mean to imply that the nonlinear stochastic
optimal control problem [53] has a similar property; only that we can
stabilize nonlinear sysfems by this separation process.

Remark 3 In the literature, there exist many tests for stability of
a closed-loop system [4,5,6,7, and many others]. All of these are
based on versions of the small-gain theorem and/or passivity
theorems. The problem with any of these tests is that they require
that either one or both of the compensator and plant must be
open—loop stable. Since there are some linear systems which cannot
be stabilized with a stable compensator,'we would expect the same to

be true for some nonlinear systems. Thus these tests would beuseless
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in trying to determine the closed-loop étability of a proposed
compensator for such a plant. The separation theorem above has no
such problem. It works equally well on open-loop unstable plants and
compensators. Thus it could almost be viewed as a type of stability
test fundamentally different from pre-existing ones of the smail—gain
or passivity type.

Remark 4 If the condition (3.8) is not satisfied glqbally, we can
still make a small-signal version of the conclusion. Equation (3.8)
should hold (if g is smooth) in any bounded subset of R", and thus if
we put the correct bounds on the size of the inputs w,r,d, we can

make sure that x,x remain in that bounded subset. This allows us to

guarantee closed-loop stability for inputs with magnitudes below some

specific value.

We now present additional results on estimation.

Theorem 3.2 Let ;zF(y,u) be an estimate for (3.6). Then the
following are equivalent:

(a) ; is a nondivergent estimate for x.

(b) x = F(y-d.u+w), and F is incrementally st;ble in the special

sense that

IlF(y—d,u+w)—F(y,u)llT < H(W.d)HT: VTER,, u,w,d€Y¥ (3.14)

where y is determined by the choice of u,w,d€¥.

Proof (a) implies (b):
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From inspection of figure 3-1, y-d is the signal at the output
of the plént and u+w is the signal at the input to the plant. Thus,
if the estimator acts on (y-d,u+w), it will act as if there were no

noises and must produce zero estimation error, as it is nondivergent:
le-xll_r =<k H(w.d)HT; VTER, ,w,d€L. (3.15)

Therefore, we have

x-xl_ = IF (y-d.wrw)-F(y,u)l_ < kli(w,d)ll_; VTeR,,u,w,deg (3.16)

where y is determined by u,w,d€¥.

(b) implies (a):

llell_ < Hx-;HT = IF(y-d,u+w)-F(y,u)li_ < k H(w,d)li_; VTR,  (3.17)

for all w,d,u€¥ because F is incrementally stable. [

Remark The statement (b) of theorem 3.2 cannot be the standard
definition of incremental stability. This is because we cannot quite
exercise all the signals, as y is determined by choice of u,w, and d.
Note that it is incrementally stable if we consider only the second

argument of F (the u, utw terms), or, equivalently, fix d and vary w.
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Theorem 3.3 Let ;:F(y.u) be a nondivergent estimatér for (3.6) with

constant k in (3.15). Then

IF(y.u)i < k I(y.u)ll_; V y,u€e,TeR,. (3.18)

Proof Let w=-u, so that x=0 and y=d. Then

HeHT = le—xll_r = HF(y—d.u+w)-F(y,u)HT = HF(O.O)-F(y,u)HT
= HF(y.u)HT < k H(y,u)"7: V T€R,, (3.19)
by nondivergence. I

Theorem 3.4 If a system described by (3.6) is detectable, then that

system is in 99.

Proof Let (w,d)=0. Then the estimator produces exact estimates,

and

llxllT = HxHT = Ill"(y,u)ll_r <k ll(y.u)llT < killyll_r + kZHuHT. (3.20)
where the constants k, .k, exist by the definition of n(s,=)n. B

Theorem 3.5 If (3.6) is incrementally stable from uwx. then it is
detectable and thus there exists a nondivergent estimator for it.

A
Proof Simply use as an estimator x=fBu. Then

el = lix-xll_ < UGB lwll_ (3.21)

which makes the estimate nondivergent. |
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Remark Now we see that we can actually use the internal stability
results of section 2.3.2, as now can present a class of systems that

are all in $9: the set of detectable systems.

3.3 State Estimators
3.3.1 Introduction

The separation theorem justifies a search for a nondivergent
estimator, as it guarantees that we will be able to use it in the
final closed-loop system. In this section we proceed to examine
specific state estimators. We start in section 3.3.2 by examining
optimal estimation algorithms. Although they might be guaranteed
nondivergent, we show that they have some rather severe computational
requirements, in general. Even with the astounding computational
advances of the past decade, we still cannot do optimal estimation in
real time for reasonable problems (except for linear systems).
Therefore we look to other, more approximate, estimators and
observers. In section 3.3.3 and 3.3.4, we examine the extended
Kalman filter and show that it has some remarkablé guaranteed
properties, including nondivergence. We continue the examination by
looking at simpler, constant linear gain observers in section 3.3.5
and a special form of observer that we shall call the transformation
based observer in section 3.3.6. Related material appears in
appendices C and D. Appendix C discusses a promising new observer
and appendix D shows the guaranteed properties of the optimal

nonlinear estimator.
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3.3.2 Optimal Nonlinear Estimation and Its Problems

For comparision purposes, we consider the optimal deterministic
estimator at first. For review, the goal is as follows. For the
system (3.6), find a dynamic system §=F(y,u) that is nondivergent,
i.e.

el = lx-xll_ < k I(w.d)lIl_; VT€R,, w.d,u€L.  (3.22)

One way of posing an optimal estimation problem is to use a minimum
energy approach [34,35]. In this approach, one selects the estimate
x(T) as the endpoint of the minimum energy trajectory, i.e. the one

that minimizes

J= E[ly—'czl2 + qw|? 1dt (3.23)

where
z = £(z) + Bu + Bw (3.24)
X(T) = z(T). (3.25)

The solution to this optimization problem is as follows:

x(T) = argmin V(x.T) (3.26)

o

where V(x,t)>0 satisfies the partial differential equation

Ve = [y(e)-Cx]'[y(£)-Cx] = V, ' £(x) - SV AV (3.27)

where E==")>0 and
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y T
._ | av_ av av
Vx i= [ - %= e ] (3.28)
1 2 n
V(x,0) = Vo(x). (3.29)

Vo is the initial condition for the partial differential equation and
corresponds to the a priori probability density in a stochastic

problem. The estimate x given by (3.26) evolves according to

x(t) = £(x(t)) *+ Bu(t) + V._ " (x. t)[y(£)-Cx(t)] (3.30)

where V__ is the matrix of second partials of V.

In appendix D, we show that the optimal nonlinear filter has a
guaranteed return difference condition property. The reader may wish
to postpone refering to appendix D until after sections 3.3.4 and
3.4.3 which detail similar properties for the extended Kalman filter
and the optimal nonlinear regulator.

The problem with the optimal nonlinear estimator presented above
is that it is infinite-dimensional. To compute it, one must actually
compute the solution to the partial differential equation (3.27) in
real time. An actual implementation would require the storage and
update of V(x,t) at each discretization interval. Consider just the
storage requirements for V(x,t) for some fixed t. If we discretize
the state space into just, say, 100 segments in each dimension, we
see that the storage requirements for a system of only 4 states is

4 8

100" = 10°. This is an incredible amount of storage, and we have not

yet even considered that we must update each of these locations at
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each discretization interval in time. Thus we must conclude, that
for even moderately complex systems, with the time scales that we
tend to see in typical control applications, this is far too much
sﬁorage and computation.

In the linear case, we have several simplifying phenomena. The
partial differenial equation turns out to be finite-dimensional, and
Vxx turns out to be independent of the measurements. As we let time
go to infinity, vxx-l approaches the steady-state covariance of the
system, and we get the steady-state Kalman filter, with its even
further reduced computational burden (the covariance is constant in
time).

Remark 1 If we had a relatively slow system of not too high order,
we might be able to calculate the optimal state estimate. Such
systems might appear in ;he process control industry, however in the

case of such slow systems, other types of estimation might be more

suitable.

Remark 2 There are many other formulations of the cptima
problem in the stochastic case, depending on the exact cost
function;1 chosen. For example, see [36,37,38,39]. Unfortunately,
they all have the drawback of requiring the solution in real time of
a partial differential equation with no useful steady-state solution.
Remark 3 In the literature, there are some examples of finite-

dimensional exact estimators. These are special cases of the

estimator discussed above, in which the filter just happens to be
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finite-dimensional. These cases seem to be rather restrictive. In
fact, it can be proven that, in general (i.e. generically), the
optimal nonlinear estimator is infinite-dimensional [40].

The above rather unpleasant state of affairs motivates us to
look beyond optimal estimation to some type of approximate.estimator.
There are a great many approximate estimators or observers in the
literature [35,37,41,42,43,44,45]. Some of these have conditions
that can be checked to ensure the nondivergence of the state
estimate. For example, [41,43] involve checking the uniform positive
definiteness of an operator or matrix over a vector space (see
section 3.3.5), while [44] involves checking the boundedness of the
solution of a specific matrix differential equation. However, none
of these aprroximate estimators have any documented guaranteed
properties (i.e. ones that can be verified easily a'priori). such as
nondivergence, that we would like in order to use them for control
system design. Fortunately, there do exist nonlinear approximate
filters with guaranteed properties. We present two of these in this
thesis, namely the costate observer and the extended Kalman filter.
Appendix C presents the results of a preliminary investigation into a
new type of filter, the costate observer. In the next two sections,
we present the results of research on the extended Kalman filter

(EKF) and its guaranteed properties, including its nondivergence.

~74-




3.3.3 The Extended Kalman Filter and Nondivergence

The extended Kﬁlman filter (EKF) was proposed as an engineering
extension to the popular Kalman Filter for linear systems [35].
Later referencés are [39,46]. The EKF as we will use it for the

nonlinear system (3.6) ‘is

(1) = £(x(t)) + Bu(t) + H(t)[y(t)-Cx(t)]: =x(0)=xo  (3.31)
H(t) = 3(t)C (3.32)
$(t) = vE(x(£))3(t) + (o) {vE(x(t)))T + E - S(e)cTes(e)  (3.33)

3(to) = Jo; to<O. (3.34)

Here, the symmetric and at least positive semidefinite matrix = is
one of the design parameters of the EKF. We shall frequently refer

to the square-root of Z, written 51/2; defined as the full-rank

matrix I' such that

rrt = = (3.35)

The other parameters of the EKF are the initial time to,<0 and the
initial state for the, covariance propogation equation (3.33). The
results reported here will require a "start-up” period for the EKF if
it is to be initialized with arbitrary Z5; that is, we must have t
for some c<0 and (3.31) starts at t=0. Obviously, we could start the
EKF at to=0 if we selected an appropriate 3,. This is the procedure
that would be used in practice.

The rationale for the EKF was that if the noises were small
enough, xz;. and one would be justified in using the standard

time-varying Kalman filter because (3.33) would then be a good
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approximation of the true error covariance. It éurned out that the
EKF was very good in practice and many papers and applications were
reported of the EKF and its variants, including [47,48]. As we shall
show, this was not just pure chance, but a consequence of certain
guaranteed properties possessed by the EKF.

We start by making some definitions based on [49].
Definition We say that [A(¢).C(°*)] is uniformly observable if for

the linear time varying (LTV) system

E(t)
y(t)

A(t)E(t): E(0)=fo (3.36a)
C(t)E(t) (3.36b)

there exist constants a,B,0 such that the observability grammian

ty

W(to.ty) := j o (s.t,)CT(£)C(t)d(s, t,)ds (3.37)

to

is bounded uniformly

BI > W(tg.toto) > al > O (3.38)
for all ty,€R,. Here ¢ is the state transition matrix for the linear
system (3.36a). Similarly, we say that [A(<).B(*)] is uniformly

controllable if for the linear time-varying system

E(t) = A(t)E(t) + B(t)u(t); E(0)=Fo (3.39)

there exist a,B,o0 such that the controllability grammian
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ty

Clto.ty) := J 8(ts.s)B(6)BT(t)0T(t, 5)ds (3.40)

to

is bounded uniformly

| BI > C(to.to*to) > al > O (3.41)
for all tg€R,.
Remark If we make the further assumption that A(t) { M for some
constant M, then the upper bounds in (3.38) and (3.41) are satisfied
automatically. Recall that for constant linear systems, the crucial
part of observability and controllability are the lower bounds, i.e.
the positive definiteness of the grammians.
Definition A nonlinear system [f,C] of the form (3.6) is
L-observable (for Linearization observable), if uniformly for every
possible trajectory x€#, the linearized system [vf(x(*)),C(*)] is
uniformly observable. Similarly, the nonlinear system [f,B] is
L-controllable (for Linearization controllable) if [vf(x(°)),51/2] is
uniformly controllable, uniform across all trajectories x(*). The
uniformity across trajectories here means that the bounds a,B in the
definitions of uniform observability and controllability are the same
for all x(-)e«.
Definition A nonlinear system [f,C] of the form (3.6) is
M-detectable (for Model-based detectable) if there exists a matrix
functional H(t,y(s),u(s).0¢s<t), depending on the past of y and u,
such that for any matrix B in our plant model (3.6), the state

estimate given by
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L4
A

x(t) = £(x) + Bu(t) + H(t.y(s).u(s).0¢s<t)[y(t)-Cx(t)]  (3.42)

is nondivergent, uniformly for all matrices B, i.e. for all BeR™P
and for all p. In addition, the functional H must be bounded in
time, and continuous, not necessarily uniformly, with respect to
y(*). This means that given a &,7>0, there exists a n(e,T) such that
if

Hy,-yzﬂw.T < n(e.T) (3.43)

then
|[H(t.,y,(s),u(s), 0¢s<t)C-H(t,y>(s).u(s),0¢s<t)C| < e; V 0<tsT. (3.44)

Remark . The matrix function H(+) in (3.42) can depend in any way on
the past of u and y. Thus it includes the optimal infinite-—
dimensional observer discus;ed in section 3.3.1, as well as the EKF,
and a host of other approximate observers. Additionally, the
observer (3.42) must be nondivergent indepenaent of B. This is in
keeping with the linear theory, where choice of B matrix does not
influence observability. Thus, M-detectability is one of the most
fundamental definitions for detectability that one can make, since it
is operational in nature: If the system is not M-detectable then we
cannot find an estimator that will be nondivergent for all choices of
the B matrix. In this sense it is analogous to detectability in

linear system theory.
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We now state our results pertaining to the EKF:

Theorem 3.6 Let f obey the gradient restriction (2.2). Then if

o . [E+ 3(t)CTC3(t)] 2 & > 0: VteR,. (3.45)

and one of the following holds:
| (a) [f.C] is M-detectable and [f.El/z] is L-controllable.
(b) [f.C] is L-observable and [£.E}/2] is L-controllable,
(c) Z2(t) is bounded in time, i.e. there exist a,B>0 such that
BI 2 Z(t) 2 al > 0; Vte€R,, (3.46)
then the EKF (3.31-3.34) is a nondivergent estimator for the

nonlinear system (3.6). Furthermore, (a) implies (c), and (b)

implies (c).

Proof See Appendix B. The steps in the proof can be read for a

sketch if the reader is not interested in the details.

Remark 1 This is a very useful theorem, as it says that if any

nondivergent estimator exists, then the EKF will also work for
[ 4

control purposes. Note that this nondivergenbce is global, as it

says nothing about the noises w.d being small. Note further that the
condition (3.45) can be easily satisfied by picking = positive
definite, as can the condition for [f.Ellz] being L-controllable.

When = is positive semi-definite the conditions (3.45) and [f,51/2

]

controllable are more difficult to check. It would seem that it
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should only require some form of stabilizability for [f,51/2], where

we would require the existence of a stabilizing state feedback
function, but at this time this is not known.

Remark 2 One should be able to prove a stochastic version of this
theoreni, perhaps by using a norm lixll that was related to the
covariance of x(t). In addition, due to the connection of the EKF
with the linear Kalman filter, one would also expect some result
saying, in effect, that no other filter has a better local estimation
error covariance.

Remark 3 If one were optimistic, one would be tempted to draw the
conclusion that a dual result to this EKF nondivergence result could
be made, that is, using some form of the time-varying Linear-
Quadratic regulator problem [50], one could derive guaranteed stable
state feedback functions without haj}ng to solve partial differential
equations. Unfortunately, this cannot work, as the control matrix
Ricatti equation must be propagated backwards in time, and we do not
know what our linearized trajectory will be at any time in the
future. We are lucky in the filtering case, as the Kalman filter
runs }orward in time, and we do not need to know A(t) for any timerin

the future.

3.3.4 Guaranteed Properties of the Extended Kalman Filter

The last section proved one very important property of the EKF, its
nondivergence under very general conditions. This allows us to use
the EKF for a control system, as the separation theorem guarantees

closed-loop stability. However, the EKF has a number of additional
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important properties, which we present here. As way of an

introduction, we start by giving a useful result for the linear

time-varying Kalman filter.

Theorem 3.7 For the

E(t) = A(t)E(t) + H(t)u(t) (3.
H(t) = 3(t)C’ (3.
3(t) = A(t)3(t) + Z(t)A(t) + E - 3(t)Cles(e), (3
3(to)=3,, (3.
the following hold:
N[I+COHJull, > lully _: Vue#, TeR,. (3
ngI+con] vy, ¢ Ivlly, _: Vveg, TeR, (3.
NLI+(CoH) qull, - 2 Sl Vueg, TeR,, (3.
where CPH is the operator mapping upCE in (3.47-3.50).
Proof Let
P(t) := z'l(c) (3.
~B(t) = P(t)A(t) + AT(t)P(t) - C'C + P(t)EP(¢) (3
v(E.t) = & ETP(1)E, (3.
U = 2 eT(0R(0E() + ET(POIAE()+2(6)cTu(e)]
(3.
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and dropping the t argument,
T T T T T, : T T

J [u'u + £ PEPE]dt = J { [u+CE] [u+CE] + & {-P-PA-A"P}f - 2u Cf } dr
(o] : (o]

=J¢ { [urce]T[usCE] - 2v } dr

(o]

. .
T
=J; { [u+CE] [u+CE] } dr - [v(E(T).7) - v(§(0).0)]. (3.58)
Since §£(0)=0, and v20 we are nearly finished. We simply identify the
y with the operator notation:

y = C¢H u, ] (3.59)
and

v

[I+CPH] u. (3.60)

The result (3.53) follows by simplé algebra. |

Remark This the analog of the linear time-invariant results [3]

o, n[I+C8(s)H] 2 1: s=jo, (3.61)
o [{I+Co(s)H} '] < 1: s=jo, (3.62)
o [I+(Co(s)H) 1] ¢ 2: s=jo. (3.63)

These results have important implications for the robustness of the
loop C¢H, and we shall see that similar results hold for the

nonlinear EKF.
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Theorem 3.8 Let the EKF be a nondivergent estimator by theorem 3.6.

Then the system x=Gu, described By
x(t) = £(x(t)) - H(t)Cx(t) + u(t); x(to)=0 (3.64)

is Lp—incrementally stable 1{p{®, where H(t) is the EKF gain based on

the linearization A(t)=vf(x(t)).

Proof For Lp-stability, we use theorem 2.3 and the proof of the EKF

nondivergence (where we show that (3.64) is exponentially stable) to

show: for Hw"w’T e,

IGu - Glusw)ll, < kallwll _ ; VTeR,. (3.65)

We then piece together the whole space ¥ by the same trick as in
theorem 2.4. Fix T€R,, let w€¥ be arbitrary, and r=lwll - Let n be

an integer such that

T -
n > c - (3.66)
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Then

IlGu—G(u+w)llp._r
1 1 2 2
= "GU'C(U*’W;) +G(U+WH) -—G(u+wr—l-) +G(u+w-l-l-) -

n-1 n-1 n
—G(u+w—;~)+G(u+w—;—)—G(u+wH)"p

T
1 1 2
< "Gu—G(u+wﬁ)“ +"G(u+wﬁ)—G(u+wH)" + ...
P,T 1 P,
n- n
Jocum®Zhr-clandy ||p .
< Loymwn 4 + L uwn
n 2 " p,T Tt n 2 " 'p,T
= kallwll | (3.67)
because
1 r
Iewll, =T e (3.68)

is small-enough to allow us to use the small-signal result. [§

In general, we will use Ccoli to indicate the operator where H is
determined through the EKF equations (3.31-3.34) where x is the state
internal to the ¢ operator. Thus, C<I>H|:I+C<I>H:|_1 is given by the map

vpCx in (3.64), where u(t)=H(t)v(t).

Corollary 3.9 For the EKF, [I+C¢H]—1 is Lp—incrementally stable,

1{p<e.
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Proof The map P,=[I+C<I>H]-1 is given by upu-CPH(t)u in (3.64) above.

Py u=Py (wtw)il = v + CLPH(t)u-PH( ) (wsw) I

< [1+]C|k] |2(t)C]| Hw"p .+ VW€, VreR,, (3.69)
where 3(t) must be bounded. |

Theorem 3.10 For i=1,2, let ui€2, and let X4 be the corresponding
trajectory through the EKF loop equation (3.64), and Hi be the
corresponding EKF gain trajectory. Let k be the Lz—gain of the EKF

loop in theorem 3.8. Assume that

hull, < M (3.70)
[Hy(t) - Ho(t)] < & Muy-uall; Vedt,. (3.71)
Then if ké&M<1, then

- 2
k™M
ST < [ 1+ Icll—_kﬁﬁ ] ||u1-u2"2 T (372)

H[I+C¢H]_lu,—[I+C¢H]_1u2H

Proof Define the trajectories:

Xy = £(xy) - Hi(t)Cxy + uy; yi=u,-Cx¢;  x,{0)=0, (3.73)
Xz = f(x2) - Hz(t)Cxz + uy; yz=u>-Cx2: x,(0)=0, (3.74)
Xa = f(x3) - Hi(t)Cxy + uy; Ya=uz-Cx3; x3(0)=0. (3.75)
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Then we have

N[T+CoH] u, ~[1+CoH] Tually

= llyy = yally = 1lys = ¥ya + ys = y2lly, o

< Ny, - Ya"2'T + llys - Y2"2’T.

(3.76)

To evaluate the first term, we can use theorem 2.4 and theorem 3.7,

because the systems (3.73) and (3.75) are time-varying in the sense

of theorem 2.4, as the gain H is the same in both (H;(t)).

second term we can do the same way, as

xa = £(x3) = Ha(t)Cxs + uz + [Hp(t)-H,(t)IC(xa=xz+x2)

and so by comparing (3.74) and (3.77),

Ixo=-x5!l
2 2379 1

and letting r:=llu,—-u,l
2 2 121.

_kbr_ K2r

llx, x3H g Tker I 2" S 1-keN

lhuztl,

we also have

"yl_y:,nz._r S ||l.11-u2||

<k o nuz—u,u2’7'{ lxg=x2lly

2,71

+ lix, |l
279, T

KZ6M

r < Txon

by theorem 3.7. Thus, putting it all together
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"uz_u1 ”

2,7

The

(3.77)

(3.78)

(3.79)

(3.80)




kZ5M

Iy =yzlly < [ 1+ ICIT:EEﬁ ] lhuy-uzlly . | | (3.81)
Remark This result essentially says that if the EKF gain does not
vary too much from one input to thé next, that the loop operator C¢H
is a very robust loop. Consult figure 3—2. Ve can see this by
referring to the robustness theorem 2.6. The main difficulty with
this result is that the trajectory H(t) of the Kalman gain varies
with the input and this affects the linearized trajectory. We want
the linearized trajectory to be the Kalman filter, but it is not
quite due to the term SH/8u. Thus we need the constraint (3.71) to
bound this effect. Note that the variation of H with inputs is a
function of the parameter =. If E=q2BBT. then we know that H/q-BW
for some orthonormal matrix W, and thus for large q, we'should reduce
the constant 6 in (3.71) towards zero. For convenience, we now

summarize the results on the EKF.

Theorem 3.11 (Summary of EKF properties) If the EKF is

nondivergent, then, assuming the constraints of (3.70-71) and letting

L2
1 ~1k76M
e i= ICIT:ESH (3.82)
N
~ 1= i (3.83)

the following hold with respect to the loop operator shown in figure

3-2:
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Figure 3-2: The Filter\Loop! CoéH
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()  n(I+coH) My, <1+ (3.84)

(b)  HCEH(I+CoH) Ml < 2+« (3.85)

I(I+CoH)ully

1
(c) il 2 Tae =7 (3.86)
2,1

u[1+(c¢H)'1]uu2 ,

(d) HuH2 -

1 .
2 5 (3.87)

(e) The closed loop system of Figure 3-2 has a gain margin of

1 1
GM = T~ ' T ] (3.88)
and a phase margin of
-1 12
PM = +/- cos [ 1 - 5 ]. (3.89)

independently and simultaneously in all channels.

Proof The only facts we have not proved as yet are (b) and (d).

(b) NCPH[I+CeH] ' = NI - [1+c¢H]'1u <1+1=n. (3.90)

(d) 0 {1+fcen1" Yy 0= {rcens1yroeny ! o

= Il CeH[I+CeH] ! I

I

2+ 7. [ | (3.91)
We have shown in these last two sections that the extended

Kalman filter possesses some remarkable properties. We have shown

that the EKF is nondivergent for detectable plants (theorem 3.6), and
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that the filter loop C$H has some good robustness properties. We
shall make use of these guaranteed properties when we come to the

NMBC/LOR methodology in section 4.3.

3.3.5 Cénstant Gain Model Based Observers

The EKF studied in the last two sections hés some very desirable
guaranteed ﬁfoperties. We would like to use it for control
applications all of the time, but it has one drawback: the
computational burden associated with propagating the covariance
matrix may be prohibitive in certain circumstances. Thus there has
been considerable interest in perhaps choosing a constant linear gain
H to replace the time-varying EKF gain. We now present some results
concerning the choice of H guaranteeing nondivergent estimation for
the nonlinear system (3.6), as shown in figure 3-3. The following is

modified slightly from [41].

Theorem 3.12. Let the constant matrix P=PT>0 énd constant a>0 be
such that o
PT[vf(x) - HC + aI] < O; VxeR®, (3.92)

uniformly. Then the gain H will produce a nondivergent estimator.
Theorem 3.13 [6] Let the constant matrices P=PT>O . S=ST>O, and A

satisfy the Lyapunov equation

[A-HC]P + P[A-HC]T + S = O. (3.93)
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Figure 3-3: Constant Gain Observer Structure
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(a) If
[A-v£(x)]P + 5S> O (3.94)

uniformly for x€R", then the nonlinear observer (estimator) is

nondivergent.
(b) If
[A-£()]P + %s >0 (3.95)

uniformly for x€R™, then the nonlinear observer is nondivergent.

Theorem 3.14 [43] (Constant Gain Extended Kalman Filter): If

uniformly

{al + [A-v£(x)] } T + & {2 + 3¢5} > 0, - (3.96)

then the Constant Gain Extended Kalman Filter (CGEKF) described by

0 = 3(A+al)T + (A+al)s - 3CICS + Z, (3.97)
H = 3C! (3.98)

is nondivergent, with this constant H being used in figure 3-3 as the

filter gain.

Remark Theorem 3.14 is basically an approximation result. It says
that if a particular observer gain is nondivergent for a particular
linear system (A,B,C), and A is close enough to vf, then the same H
will be a nondivergent filter gain for the nonlinear system. In the

case of the CGEKF, the robustness margins are quite substantial, i.e.

-92-




not just a "e-close” type of result. The good robustness margins are
apparently attributable to the robustness of the Kalman filter,
including the time-varying version which we saw in theorem 3.7. We

now present a new result on CGEKF robustness margins.

Theorem 3.15 (CGEKF robustness margins) Let the CGEKF satisfy the
conditions (3.96-3.98) above, let k be its L2 nondivergence gain, and
suppose there exists a constant e€>0 such that

157 vE(x) - A]| € e: V xeRP. (3.99)

Then for all u,,u,€¥,T€R,
H[I+C¢HJu, - [I+C¢H]u2H2 - 2 (1-2ek) Hui—uznz T, (3.100)

Proof First we examine the equation relating defining the map umx:

x(t) = £(x(t)) - HCx(t) + u(t); x(0)=0. (3.101)
As we vary u by small amounts, we see that we will be looking at the
linearization of (3.101); thus we can apply theorem 2.4 and find the

incremental gain (3.100) by looking at the uniform gain of the linear

time-varying system:

E(t) = vf(x(t))E(t) - HCE(t) + Hw(t) (3.102)
Def ine

P := 371 (3.103)

v(§) = % ETPE. (3.104)
Then
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£CD) _ 5 < gT(o)PE(e) = ET(O)PLVE(x(£))IE(E) + ET(E)Cw,

(3.105)

and

T T T T T T T

J; [ww + E PEPE]dt = J: { [w+CE] [w+CE] + £ {-PA-A"P}§ - 2 Cw } dar
- Jfr { [w+CE]T[w+CE] + ET{-PA-ATP}E - 2v + 2E P[vf]E } dr

= J: { EW+C§]T[W+C§] + 2§T{Pvf-PA}§ - 2v } dr

< IwiCEll, - v(E(T)) + J: { 2F P[vE-A]ZPE } dr

2 2
< Hw+C§H2.T + 2keﬂw"2'1 (3.106)
and
(1—2kc—.)||wll2'T < H[I+C@H]w"2'1. I (3.107)

Thus we see that if we can bound the deviation of the actual
system, vf, from a nominal value, A, we can rgtain some of the
benefits of the originai Kalman filter robustness. For problems that
are not too nonlinear, the CGEKF looks like a good alternative: 1its

nondivergence can be checked (3.96) and it may retain some large

robustness margins.
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3.3.6 Transformation Based Observers

This section discusses a new typeiof observer that we will call
a transformation based observer. In [26], it is called an observer
with "linearizable error dynamics”. The basic idea is to transform

the nonlinear system (3.6) into a form in which a possible observer

is immediately apparent.

Definition A nonlinéar system of the form

i(c)
y(t)

A x(t) + v(y(t).,u(t)) (3.108a)

C x(t). (3.108b)

where v:R"xR™-R", is said to be in observer form [51]. Note that the

nonlinearity 7(+) depends only on the output vector y(t), not the

entire state vector.

If we have a system in observer form, it is quite apparent that
we can build an observer for it if (A,C) is an observable pair.

Consider the observer possibility

;(t) = A x(t) + v(y(t).u(t)) + H [y(t) - C x(t)] (3.109)

The error dynamics for e=x-x are given by

e(t) = [A - HC] e(t) (3.110)
and so clearly if we select H so that A-HC is stable, we will have

exponential decay of the state estimation error.
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If we modify the problem slightly to follow our philosophy, we
would add some deterministic procéss and observation noise. Our

system is now

x(t) = A x(t) + v(y(t).u(t)) + B w(t) (3.111a)
y(t)

We now can show the following easy result.

C x(t) + d(t). ° (3.111b)

Theorem 3.16 The observer (3.109) is a nondivergent observer for

(3.111) if we select H so that A-HC is stable.

Proof The error dynamics are
e(t) = [A - HC] e(t) + B w(t) + H d(t) (3.112)
and if A-HC is stable, then (3.112) is Lp—stable for all p. Thus the

map (w,d)»e is stable and the observer is nondivergent. |

Remark 1 Unfortunately, most systems that we encounter will not be
in observer form. Note, however, that there might exist a state
transformation taking our original system (3.6) into observer form
(3.109). In [26]., conditions are g;ven under which it is possible to
transform a given nonlinear system into observer form. Preliminary
research has indicated that this conversion is noﬁ very generic,
i.e., not very many systems can be transformed this way. This is in
contradistinction to the dual controller case, to be discussed in
section 3.4.5. Even if exact transformation to observer form is not

possible, there may be an approximate transformation which could be

used with some form of robustness test to guarantee nondivergence.
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Remark 2 If we have the freedom to select our output variables, we
can easily put a nonlinear system in observer forﬁ. If every state
variable is involved in our original nonlinearity f(+), though, this
may require the measurement of all the state variables.

We have now discussed‘vafiﬁus filters with regard to their
nondivergence and return difference properties. In section 3.3.2 ané
appendix D, we covered the optim#l nonlinear estimator and showed
that while it had good return difference properties, it was far too
computationally intensive. Motivated by the relationship between
incremental stability and uniform stability of linearized systems as
discussed in section 2.3.4, we investigated the extended Kalman
filter (EKF) in section 3.3.3 and 3.3.4. We were able to show that
the EKF is'nondivergent for all M-detectable plants (ones for which a
nondivergent model based observer exists) and that furthermore, it
possesses some desirable return differnence conditions, making the
filter loop CPH a "good" loop operator. In section 3.3.5, we
continued by investigating the constant gain model based observers,.
where we gave conditions for checking the nondivergence of specific
observers, involving the checking of the uniform positive
definiteness of a matrix for all peints in R". We then discussed the
transformation based observers in section 3.3.6, where the idea is to
tranform the plant into a form that allows an observer to be easily
built with linear error dynamics. Finally, in appendix C, we
discussed some preliminary results on the costate observer, which has
some guaranteed loop properties, and logks promising for a

nondivergent estimator.
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3.4 State Feedback Controllers
3.4.1 int;oduction

This chapter has up to now been concerned with nondivergence of
estimators. As indicated in section 3.2.Athat is only half the
problem of stabilizing a nonlinear system; the other half is
state-feedback. The basic.requirement was that a (linear or
nonlinear) state-feedback gain be found that made the nonlinear
system stable when all the states could be measured. If such a
control could be found, we could then use the estimated states
instead of the actual states without giving up closed-loop stability.
In this section, we will discuss the state feedback problem in more
detail. In particular, in sections 3.4.2 and 3.4.3 we discuss an
'optimal control problem and the guaranteed properties possessed by
its solution. We then continue the discussion of state feedback
controllers in a dual manner to the estimation material by
considering constant linear gain state feedback and transformation
based feedback, in sections 3.4.4 and 3.4.5, respectively.
3.4.2 Optimal Control

In this section we will discuss a particular type of
state-feedback, that derived from the solution to certain nonlinear
optimal control problems.

We first state the nonlinear optimal control problem and its

solution [52,53,54].
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Optimal Control Problem For the nonlinear system

x(t) = £(x(t)) + B u(t); x(0)=xq. " (3.113)

Find u(t) such that the cost functional

Jxou()) = & [ Iatx(e)) + sn(0)u(e)] ac (3.114)

is minimized with p>0 and m(x)20 for all x. We denote the minimum

2
such cost J :

J¥(%0) € J(x0.u(*)); V uee. (3.115)
Optimal Control Solution If there exists a V:R"-R,, V(x)>0 for all

x#0, V(0)=0 satisfying the Hamilton-Jacobi-Bellman (HJB) partial

differential equation

0 =g m(x) + V. (x)f(x) ~ ;—p v, [(x)BBTV_ (x) (3.116)

rh
(<)
ot ]
)
o
[y

'x€R™, with Vx(x)={5V/6x]T. then the optimal control is
u(t) = - g(x(t)). (3.117)
where g(x) is given by

g(x) = %BTVx(x). (3.118)
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and J*(xo)=V(x).

Furthermore, if the solution J*(xo) exists and is at least twice
differentiable, then J*(xo) satisfies the HJB equation (3.116) and
the optimal control is given by (3.117) with V(x):J*(x).

Remark 1 The problem here is that given an initial condition x,, we
are to find the control signal that minimizes (3.114). Thus the
problem is formulated such that one is expecting an open-loop optimal
time function. It is therefore notable that the solution can be
expressed in terms of a feedback function u=-g(x), depending only on
the current state, and independent of time.

Remark 2 It is appropriate here to discuss the actual computation
of V(-), or g(*) for the optimal control problem. This problem is
not nearly as difficult as that of the computation of the optimal
nonlinear filtering equations. The optimal filtering equations
discussed in section 3.3.2 require the integration of a PDE in
real-time. This is hard enough to do on a main-frame computer in a
laboratory off-line; on an on-line computer in an aircraft, for
example, it becomes ridiculous. The HJB equation discussed Kere is a
much easier proposition. Even if we need to use a main-frame
computer to solve (3.116), we only have to solve it once, off-line,
to compute g(x), which can be stored and used in the actual (smaller)
on-line computer. Of course, efficiently storing g(x) is a difficult
problem in itself, but there are possibilities [55].

While solving the HJB equation is quite difficult to solve with
current methods, it is likely that soon there will be better tools

[56.57]. As a comparision, the Ricatti equatioh was considered
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extremely hard to compute reliably in the early 1960's until the
advent of the Schur vector approach [58]. It is hoped that we can
provide some motivation here to pursue more efficient methods of
calculation and s£orage of the feedback function g(x). -

The motivation that we refer to is in the guaranteed properties
possessed by solutions to the optimal control problem presented

above. We present these in the next section.

3.4.3 Guaranteed Properties of Optimal Nonlinear kegulators
In this section we present both existing and new results

concerning the properties of optimal regulators.

Theorem 3.17 (Guaranteed I/0 Properties of Optimal Regulators)
Assume that a solution to (3.116) exists. Let G be the nondynamical

operator defined by

(Gx)(t) := g(x(t)). (3.119)
Then the closed-loop system shown in Figure 3-4 has the following

properties:

(a) Return Difference Condition [59]

N[I+GoB]ull, _

Ilullz'.r

2 1; Vu€g, T€R,, uzO0, (3.120)
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+

Figure 3-4: The Optimal Control Loop: G¢B
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(b) Other Robustness Properties

IGPBL I+GeB] ull, _

Ml S 2; Vueﬁf.‘relRo. u#O. (3. 121)
u"2 r -

n[1+(c¢B)'1]un2'T

2 & Vuet,reR.. uro0, (3.122)
fhul

2,7
(c) Robustness Margins

The closed-loop system has -6dB to +» multivariable gain margin and

-60 to +60 degrees of multivariable phase margin at the plant input.

(d) Closed-loop Stability

n[1+c¢B]'1u2 < 1. A (3.123)

and

NGPB[I+GoB] 'H, ¢ 2, (3.124)

i.e. the closed-loop system (mapping wsg(x)) is L2—stable.

(e) "Lz-domain inequality”

If
m(x) = x'Clcx, (3.125)
then
NLI+GeBTulZ _ 3 mun® _ + LucoBui? ;. vuee, rem (3.126)
2,1 2,7 p 2,17’ ’ * )
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(f) Exponential Stability

If there exists an M,y such that

IV ()| <M : vxeR", (3.127)
m(x) + %; VxBBTVx. 2 v |x|2; Vx€R", (3.128)

then the closed-loop system (3.113) with (3.117) is exponentially
stable and thus for the closed-loop system with u=-g(x)+v, the

mapping vex is Lp-stable for 1<{p¢=.

Proof (a) [59] In a similar manner to theorem 3.7

dVoe(e)) . V,T[£(x)+Bu] (3.129)

and

I: [uTu + m(x)] dt -~

J: { [u+g(x)]Tp[u+g(x)] - 2Vfo(x) - 2V§Bu } dt

T
{ e elws(0 - 27 } ae

;
{ rarso1Terure(01 } ac - [v(x(m)-V(x(O)1.  (3.130)

A’
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Now recall that since we always use a zero initial condition in the

definition of the operator ¢, x(0)=0, and thus V(x(0))=0. We have
Hu" S H[I+G¢B]uﬂ T . (3.131)
(b): From (3.131), letting v=[I+GPBJu, we have

H[I+G®B]~ vH ,§ nvu2 . (3.132)

Thus

HG@B[I+G¢B]-1uH2' I {I - [1+G#B]" 1} u ly < 2 Hul (3.133)

2,7

and letting w = GPB[I+GSB] 'u, we have

wll, _ < 2 W{I+(GoB)" Lywi. | (3.134)

(c): The robustness properties are obtained from the return
difference condition (a) with the robustness tests in theorem 2.8.
(d): These are immediate from (b) and the definition of norm.

(e): From (3.130), as in (a). V(x(T1))20. V(x(0))=0, and

J: m(x(t)) dt = HC¢BuH§.T

imply (3.126) after dividing by p>0.

(f): The conditions (3.127-3.128) guarantee that V(x) is a Lyapunov
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function for the closed-loop system satisying the requiremeﬁts of
theorem 2.2 and thus x=0 is an exponentially stable equilibrium point
of the closed-loop system. We can now conclude Lp-stability by

theorem 2.3. B

These theorems give us the guaranteed properties that are
possessed by the optimal control solution. They are expressed in
terms of the loop operator GPB. The proof of result (a) was taken
from [59]. The result (c) was also found by [60] for a more general
nonlinear system in a Lyapunov sense only. The gain margins of (c)
were also found for the Lyapunov case by [61,62]. Note that here we
have more than just gain and phase margins, we have a "ball” of
robustness, defined by (a) and (b) and by the robustness tests of
section 2.5, and in addition, we have 1/0 stability, not Lyapunov

stability.

Result (e), the "L2 domain inequality” is the nonlinear
extension of the Kalman frequency domain inequality [2,72] for linear
systems. This inequality (3.126) may be the start of loop shaping
ideas, as it relates properties of the solution to the HJB equation

-(GPB) to properties of the parameters of the problem statement
(CeB.p).

In addition to the results of theorem 3.17, we would like to
have incremental versions, i.e., prove that the closed-loop system is
incrementally stable. Unfortunately, these results are not available
at this time. It seems that it will require some sort of one-to-one

mapping condition on the nonlinearity f. Note that for the
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one-dimensional case (n=1), the HjB can be solved explicitly, and the
solution is incrementally stable if and only if vf does not change
sign over the real line. This incremental séability issue is related
to the results of appendix C concerning the costate observer.

The property (f) is stated in a global manner, but if the
conditions (3.127-3.128) hold only in some ball (if V is smooth then
the condition (3.127) holds in any bounded region) then we will get a
small-signal form of 1/0 stability, as stated in theorem 2.3. This
will be the case for systems containing saturations, as we know that
the system can never be stable when signals can be arbitrary in size
and injected into any component of X.

Now consider the optimal cost J“(x):V(x) as a function of the
control weight, p. Kwakernaak and Sivan [63] discuss the limiting
behavior of V(x) as p=0 for the 11ne£r case, where V(x)=(1/2)xTKx and
K is the solution to the appropriate Ricatti equation for the Linear-
Quadratic-Regulator (LQR) problem. Since the HJB equation is the
generalization of the Ricatti equation for nonlinear systems, we
might suspect that there would be some similar asymptotic behavior

here as well. There is:

Theorem 3.18 (Cheap Control) Let

x.TCT

m(x) = Cx | (3.135)

[ [

and consider the value of the optimal cost J“(x):Vp(x) as we vary the

control weight, p, down to zero. Then the following facts hold:
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(a) The following limit always exists

1im VP(x) = VO(x). ' (3.136)
p—0

(b) If |
lim vi(x) = 0, : (3.137)
p_o .

then there exists a unitary matrix Wp(x). depending on both x and p

(i.e. WPT(x)Wp(x) = I Vx.p) such that

lim ¢F'Wp(x)gp(x) = Cx; V x€R". (3.138)
p=0 . .

Proof (a): Fix x€R". Then Vp(x) is non-increasing with
decreasing p by inspection of (3.114). If we were to use the same
feedback g(°+) for a smaller‘value of p, we would get a smaller cost
because the trajectories would be the same and p is the control

weight. Since Vp(x) is the optimal (minimum) cost starting from x,
py < pz ==> VPi(x) ¢ VP2(x); vxeRr". (3.139)

Since Vp(x) 2 0 Vx, the limit must exist.

(b): Letting Vz(x)-» O in the HJB equation (3.116), we have

lim |ep(x)|2 = xTCTCx (3.140)
p=0

1 (o
e
8
—~—
=]
-3
ﬁ <
r-’\.-;
w
-3
S
——
¥
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where & is defined in the obvious way. Since this implies that
|[2P(x)| = |cx|:  vx.p. (3.141)
there must exist a unitary matrix Wp(x) depending on x and p so that

1im szp(x)gp(x) =cx: vx. [ (3.142)
p=0

Remark 1 We would like to have VO(x)=0 imply (3.137) but need some
uniformity condition for the convergence. It seems likely to occur
in practice, as we would not expect Vp(x) to become too "oscillatory"”
in x as p=0.

Remark 2 In the linear case [63], the above results are related to
the minimum phaseness of the original open-loop system, namely, if
C#B is minimum phase, then VP-0 as 0 and (3.137) holds. We discuss

this issue further in section 4.5

3.4.4 Constant Linear State Feedback
In this section we present results on the stability of a state
feedback controller with a constant linear gain. The results are

completely dual to those of section 3.3.5.

-109-



Theorem 3.19 (Linear-Quadratic-State-Feedback [6]) Let the

gain matrix G be defined by

¢ = R 187k

where K=KT20 is the solution to the Ricatti equation

0 = K(A+al) + (A+aI)'K + Q - kBR™!BTK

with @>0, Q=Q'20, and R=R'>0. Then if uniformly

18Tk 15> 0

K[al + (A - v£(x)) + 5 [ Q + KBR™
for all‘xGRn. then the feedback
u(t) = - G x(t)

stabilizes the nonlinear system

x(t) = £(x(t)) + B u(t) + w(t)

(3

(3

(3

(3

wex, i.e. there exists k such that for the closed-loop system

lell_r < k HwHT; YweYL, T€R, .
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Proof See [6]. |}

Note that we also could have a robustness ma;gin result akin to

theorem 3.15, which we will not bother to state here as the analogy
should be quite clear. Thus it appears that under some conditions,
including systems that are not too nonlinear, we can design a state

feedback controller quite simply.

3.4.5 Transformation Based State Feedback
Continuing the analogy with the treatment of observers, we now
discuss a state feedback that is analogous to that discussed in

section 3.3.6.

Definition [51] A nonlinear system of the form

x(t) = A x(t) + B a(x(t)) + B u(t) (3.149)

is said to be in controller fornm.

We can stabilize a system of this type quite easily, because we can

cancel the nonlinear term a{x) through the control u.

Thepren 3.20 The state feedback
u(t) = - G x(t) - a(x(t)) (3.150)

will stabilize the system in controller form
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x(t) = A x(;) + B a(x(t)) + B u(t) + B w(t) (3.151)
(i.e. (3.148) holds), if A-BG is stable.

Proof The closed loop trajectory is

x(t) =[ A-BG]x(t) +Bw(t). N (3.152)

Remark Note that many mechanical systems, such as robots, are
alfeady in controller form, where all the nonlinearities are in the
acceleration equation. Even if our system is not originally in
controller form, there may exist a state transformation that takes
the system into controller form. Just as in the observer case, there
exist conditions that make it possible to check whether it is
possible to transforﬁ a given system into controllef form. 1In
[21.,22,23] conditions are given under which a combination of state
transformation and nonlinear state feedback will linearize a system.
Just the state transformation part is what we need to get to
controller form—the state feedback part corresponds to the function
a(+) above.

In this chapter we have covered both state estimation, and state
feedback. We can now put them together to produce a stable
closed-loop system, as indicated by the separation results of section
3.2. However, we have no way of telling, a priori, what the good

properties of the closed-loop system will be, if any. The next
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chapter will explain how to get these a priori guarantees in a
systematic manner, in which we try to exploit the good properties
possessed by either the estimator loop or the state feedback loop

discussed in this chapter. -
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CHAPTER 4. THE NMBC/LOR METHODOLOGY

4.1 Introduction

So far, we have covered both the ;Qalysis of feedback systems in
chapter 2 and the synthesis of stahiliziﬁg compensators in chapter 3.
In this chapter we attempt to bring the analysis results to bearvon
the guaranteed properties we uncovered in the last chapter. We now
take as our goal the design of a dynamic nonlinear compensator that
will meet given specifications for the closed-loop system.

The structure of this chapter is as follows. We start off in
section 4.2 by presenting the technical theorems of Loop Operator
Recovery (LOR) for the three variations that we will discuss:

(1) recovery at the plant input, (2) recovery at the plant output,
and (3) formal loop shaping. In addition we present a result on
Q-parameterization [28] that will be useful. After presenting the
basic theorems, we will be ready to detail the entire design process
using the NMBC/LOR methodology. in section 4.3. Section 4.4 gives
some design hints, involving scaling and dynamic augmentation, while
ection 4.5 gives an informal diécussiﬁn of "minimum phase” systems.
Finally, section 4.6 critiques the entire NMBC/LOR procedure and

compares it to some other possibilities.
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4.2 The Loop Operator Recovery Theorems
The Loop Operator Recovery (LOR) theorems that will be presented
here are direct extensions of the Loop Transfer Recovery procedure of
LQG/LTR [1,2] in the linear case. The driving force behind the LOR
idea thus comes directiy from [1], although the methods of proof here
are of necessity different than their counterparts in the linear
case. A study of the methods of proof used here might be instructive
for readers interested in linear systems as the proofs here are
different from the original ones, even when specialized to the linear
case.
For the following, we assume that we have a plant
x(t) = £(x) + B u(t) + B w(t) (4.1a)
y(t)

and the nonlinear model-based-compensator

C x(t) + d(t), (4.1b)

£(z(t)) - HCZkt) - Bg(z(t)) + H[y(t)-r(¢)] (4.2a)

- g(z(t)), (4.2b)

z(t)
u(t)

or, in operator notation

y = C#B(u+w) + d (4.3)
u = - G[¢~+ HC + BG]"MH (y-r). (4.4)
or
y = P(utw) + d (4.5)
u=K(ry) =Ke, (4.6)
where ‘
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P := COB (4.7)

K := - G[¢~ 1+ HC + BG] MM (-I). (4.8)
and where we define the nonlinear (nondynamical) opérator G:

(Gx)(t) := g(x(t)). | (4.9)
See figure 4-1 for a block diagram of the closed-loop system. Note
that we have not used ; as the state of the compensator. This is
because we are using a reference command, and thus the state of the
compensator is no longer the state estimate. However, this does not
bother us, as we are interested in closed-loop performance, etc., not

state estimation.

We now present a basic operator fact before presenting the

LOR theorems.

Fact For $,G nonlinear and B linear,
-1, -1 -1
[¢ "+BG] "B = ¢B[I+GoB] . (4.10)
Proof The proof of this fact is quite éasy, but it will be

instructive to do it by inspection of the block diagram. Consider

figure 4-2. We have

x = PB[w-Gx] (4.11)
¢ x = Bw - BGx (4.12)
x = [¢~1+BG] 'Bw. (4.13)
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Figure 4-1I:

Closed-Loop System

-117-




Figure 4-2:

Demonstration of Operator Equality
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Similarly,

and thus we have

= w - GIB p (4.14)
= [1+GeB] ! w : (4.15)
= ¢B'p = SB[I+G¢B] } w, (4.16)

established the fact. | |

Consider figure 4-3, where we depict the NMBC structure in the

closed-loop system. We now present two theorems dealing with the

asymptotic behavior of the loop operators for figure 4-3.

Theorem 4.1 (LOR at the Plant Input) Let Hﬂ' the filter gain in

-

) pensa , be& a linear operator, parameterized by p such that
lim H Vi = BW, (4.17)
-0 B -
!

where W is any invertible operator. Then if B is linear

zZ->x as p-0, if d,r=0, (4.18a)
and

lim (-K)(-P) = G¢B. (4.18b)

u-0

For this theorem, we do not require that C be linear.
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Proof - Define the nonlinear operator

-1 -1

X = [¢ +BG]

Then
-1 -1...
K =-G[X " + HC] 'H (-I)

and by (4.10) and the linearity of H,

- GXH[I+CxXH] } (-I)

=
(]

.Now let p-0, and we get

=
i
[

GeB{CeB} 1 (-1).

where we used (4.10) again. Thus

(-K)(~P) > G#B{C#B) l{CeB} = GoB,

A)

- GXHVA[ IV + CXvir] ™ (-1).

GXBW[CXBW] "} (-I) = - GXB[CXB] !(-I)
-1
- c[¢‘1+3c]’13-{ cro~l+c] B } (-1)

-1
c¢B[1+c¢B]‘1-{ CoB[ I+G¢B] ! } (-1)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

where the convergence is pointwise in the signal space and time, i.e.

iiﬁ " {(—K)(-P) - GOB } u "

P.T
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for each fixed u€s,T7€R,. (4.18a) is shown by repeating the above
for G=I. B '

Remark The convergence is only pointwise, not uniform. Thus it is
only a formal result if we do not have any guarantee of closed-loop
stability. Note also that the result holds independent of the gain
G. That is, G can be nonlinear, time-varying, or even a dynamical

system itself.

Theorem 4.2 (LOR at the plant output) Let Gp be parameterized by

p>0. Let assumptions (a-e) be

(a) lim vp G = W,C ; W, invertible,

(b) 1lim G vp

W.C ;: VW, invertible,

(c) B linear,
(d) C linear,
(d) [<l>_1+BGp]-l linear V p>0,

(e) Gp[x,-xzj - prl-prz if C(xy-x3) = O.

(i) (a) and (c) imply that

lim Cz_= 0, if w=0. (4.25)
p=0

(i1) (a-e) imply
lim PK = C¢H. (4.26)
p—0
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Proof First we show conclusion (i). Since we will consider we will

be considering the loop PK, we are implicitly assuming w=0.

x, = 9B(-Cz)) = 9B(-Gx +Gx,~Cz,) g (4.27)

¢‘1xp = - Box + B(Gx,Cz,) ‘ (4.28)

x, = [¢'1+Bc]13[cxp-czp] = ¢B[1+G¢B]‘1[cxp-czp] (4.29)
and

Cx, = COB[IVp + vpcoB] ! [VRGx ~VeGz )] (4.30)

Now, let p=0, and
C C - . 4.31
X, = (xp zp) ( )

Therefore, Czp must go to zero. Consider implication (ii).

Lemma G[¢ 1+BG]™! - (coB) los as p-0. (4.32)

Proof of Lemma We have
cre 1+Bc]! = cro~l+Bey I[o” L4+Bc-BC IO (4.33)

G{I - [¢~1+Bc] 1BG}e, . (4.34)

by linearity of [¢-1+BG]-1. Now, consider
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C{I - [¢"1+BG]BC}® = {C - CEB[I+GeB] lG}o
= {C - CeB[IVp + VpG#B] :VpG}o

> {C - C}¢ = 0, as p-0. . (4.35)
Thus we can use condition (e) to conclude

c(-1)[¢ 14Be1™! » - (¢ - c[o~l+Bc] BG)o
= - {G - GeB[I+GeB] lc}o
= - {I - GeB[I+G¢B] })co
= - [1+G¢B] lco

» - (coB) lco, as p=0. [ (lemma) (4.36)
We now put these results together:

PKe = COB{-G[¢™ '+HC+BG] lH(-I)}e = COB(-G(-1)[¢ '+BG][- HCz + He]
- COB{-G(-1)[¢ 1+BC] 'He |

- CoB(-I)(-1)(CeB) lcoH = con. | . (4.37)

Remark This theorem appears somewhat 1imited in scope because of
the conditions (d) and (e). These imply that our system is of the

form

x(t) = A x(t) + Ba(Cx(t)) + B u(t), (4.38)
vhich is both in controller and observer form (see sections 3.3.6 and

3.4.5). If our system is not in this form, we may get convergence

only over some limited set of signals.
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We now come to the Formal Loop Shaping (FLS) theorem.

Let the system Tdeszv»w be given by

s(t) = £,(s(t)) + H v(t) " (4.39a)

w = Ds(t). | (4.39b)
Let ¥ be the ¢ operator for the system (4.39a), i.e.

v := [s LR, 7L, (4.40)
where S is the integral operator and (F,x)(t)=f,(x(t)). Then

w=T v = DI v. (4.41)

We will be considering the block diagram shown in figure 4-4 for our

control system under FLS. The equations are

u = [I4G_¢B]™'G_¥H[ I+DVH] ' [e+CoBu] C (4.42)
and thus
4 -1 _
K = { [1+D¥H][G_¥H] '[I+Co _B] - CoB } . (4.43)

Comparing figures 4-3 and 4-4, we can see that if everything was

linear, and CPH=D¥H, the NMBC/LOR and FLS compensators would be

equivalent. That is, FLS for the linear case is standard LQG/LTR if

- -125-




aanjonilg Surdeyg doo| jewroy

:p-F 9In31y

X9

-126-



-126-




we let COH=DYH. Since we are dealing with nonlinear systems here, we
"~ expect that figure 4-3 and 4-4 have different properties, even if

CeH=D¥H. They do.

Theorem 4.3 (Formal Loop Shaping) Consider the control system
block diagram shown in figure 4-4, where K is given by (4.43). Then

if there is an invertible operator W such that

(a) lim »/Ecx = WC, and (4.44)
p0
(b) lim JEGS = WD, (4.45)
p-0
then
lim PK = D¥H. (4.46)
p-0
Proof
-1 -1 -1 -1
K = (C¢B) { [I+D¥H][G_¥H] [I+Ge B](C#B) ~ - I } , (4.47)
so that

-1
PK = { [I+D\IIH][w/EGs\IIH]-l[\/EIh/EGxth](CQB)-I -1 }

-1
-,{ [(Dvn) " 1+17(CoB)(CoB) ! - 1 }

=DwH. [ (4.48)
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We have now presented the technical theorems for the recovery
procedure. We now present a result from Q-parameterization [28],
which will allow us to guarantee that FLS préduces a closed-loop

stable system.
Theorem 4.4 (Q-Parameterization) Consider the closed-loop system of
figure 4-5. If Q is stable and P is incrementally stable, then the

system will be closed-loop stable.

Proof We have

HuHT =lQ[r+Pu-d- P(u+w)]ll_r
< uQu.r HrHT + ndHT + HPHAGHwHT ]
< kin(r.d.w)HT. . (4.49)
and .
Ilyll_r = lid + P(u+w)"T £ HdHT + HPH°"wHT + HPH-HuHT'

< kali(r.d.w)Hl_. | : (4.50)
In the next section we will discuss the use of these technical

results, together with the results of the previous chapters, in

dgsigning feedback control systems.
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Figure 4-5: Q-Parameterization Structure
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4.3 The NMBC/LOR Methodology
4.3.1 Introduction

In this section we will assemble all of.our results together to
indicate the step-by-step procedure for designing a multivariable
feedback control system. We have three variations. The first one,
recovery at the plant input, is discussed in section 4.3.2. This is
the most general procedure of the three, in that it does not require
the special conditions that we saw in theorem 4.2, nor does require a
stable plant. The second procedure, recovery at the plant output, is
potentially more useful in that it allows the command following and
output disturbance properties to be manipulated, although it does
have the restrictions of theorem 4.2. This procedure is described in
section 4.3.3. Finally, the formal loop shaping procedure. discussed
in section 4.3.4, allows the command following and output disturbance
rejection loop (the loop broken at the plant output) to be shaped
arbitrarily, but has the restriction of requiring an open-loop

incrementally stable plant to guarantee global closed-loop stability.

4.3.2 Recovery at the Plant Input

We now give the steps for designing a controller based on the

recovery at the plant input method, using theorem 4.1.

Step 1 (Modeling): Develop a Model for the plant to be controlled
as a nonlinear differential equation, or equivalently, in the form
P=C¢B, discussed in section 2.2. This is our design plant model, and

can include augmented dynamics (which will be discussed in section
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4.4). As pdrt of the modeling process we must develop bounds on our
modeling error. This is most easily done (for now) in the frequency

domain.

Step 2 (Specifications): Convert all available specifications into
specifications on the loop broken at the planﬁ input, or T=(-K)(-P).

Consult figure 4-~1. We will call this the desired looP.Tdes.
Obviously, if the more easily we can express our specifications in
terms of Tdes’ the better off we will be. The specifications that

can be easily translated in terms of T are

des

(a) Nominal Closed-Loop Stability. Obviously T must be

des
closed-loop stable. In addition, since it will be realized as
(-K)(-P) for some K, that realization must be internally
closed-loop stable as well.

(b) Input disturbance spec}fications. If Tdes is large for all
signals in some set, then the response to noises in that set
will be small. Use the results of section 2.4 for calculations.

(c) Robustness to unmodeled dynamics. We develop specifications for

bandwidth, etc. and can express them in terms of T“e using the

<
>

results of section 2.5.
The basic idea of this step is to capture all available

specifications. Thus, if a loop Tdes meets these specifications, we

will be satisfied using it.
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Step 3 (Target Loop Design): In this step we delovelop a target
loop that will meet all of the specifications of step 2. In this
variation of NMBC/LOR, we use a loop

Ty, = GPB (4.51)

de

for some nonlinear operator G. It is suggested that this G come from

the solution to an optimal regulator problem, although this is by no
means necessary. However, if we did use optimal regulator theory, as
discussed in section 3.4, we would be guaranteed several good
properties for the target loop, including

(a) Nominal Closed-Loop Stability. The regulator loop is guaranteed
to be closed-loop stable.

(b) Adjustable Performance. By varying the matrix Q and gain p in
the optimal regulator problem, we can adjust the performance of
the target loop Tdes' For example, by making p smaller, we
increase the performanpe and bandwidth. In the linear case,
bandwidth control is many times sufficient to develop a
reasonable "first pass"” controller.

(c) Guaranteed Robustness. As shown in theorem 3.17, the loop G¢B
has many guaranteed properties, including (1/2,®) gain margin
and +/-60 degrees phase margin. Thus we automatically have

obtained a robust target loop.

Step 4 (NMBC Construction): We now construct the NMBC as shown in
figure 4-3. The gain G comes from step 3, and the gain H must be
chosen such that the closed-loop system is stable. The way to do

this is to use the separation theorem of section 3.2 to realize that
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we should select H to make the estimator contained in the NMBC
nondivergent. This could be done in ény of the ways discussed in
section 3.3, however, the easiest general pufpose idea is to usé the
extended Kalman filter. From theorem 3.6, we know that if the system
is detectable, then the EKF will be nondivergent. The CGEKF, while
computationally simpler, may not be nondivergent: we need to check
the conditions given in section 3.3.5. As required for the next step

we will need a set of H's, parameterized by u>0, such that

lim Vit H = BW, W invertible, (4.52)
u=0 »

and Hu produces a nondivergent estimator for all u>0. These Hu‘s can
be generated by the EKF if we select E=qBBT. with q=1/u, and we meet
certain minimum phase conditions (see section 4.5) analogous to the

minimum phase conditions in- time-invariant linear systems.

Step 5 (Loop Operator Recovery): 1In this step, we apply theorem 4.1

and let pu get small. We have that

;:3 (-K)(-P) =GB = T,__. (4.53)

If we select u sufficiently small, then our actual loop, (-K)(-P).
will approach the target loop, Tdes' that we selected for its good

characteristics. Furthermore, we know that the system will be
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closed-loop stable (including internally stable) for all values of
u>0. Thus, for our selected value of u, we have designed a
compensator K that stabilizes the plant P and meets all of the

specifications.

Step 6 (System Simulation): In order to be sure that all
specifications were in fact included in step 2 and that nothing was
neglected, many simulations of the closed-loop system must be
performed. This will involve more actual simulations than in the
linear case, because it will be harder to "excercise” all the
different modes and operating regimes. If the design proves

unsatisfactory in any manner, we must go back to step 2 or step 3 to

]

modify the target loop G#B by modifving G. Because GORBR has half thc
dimension of (-K)(-P), it is easier to simulate and check the
specifications on G$B in step 3, rather than waiting until step 6.
In section 5.3, we present a numerical example demonstrating
this recovery procedure using a simple nonlinear pendulum model.

End of Design Procedure

Ve have outlined the design procedure for loop operator recovery
at the plant input, which is used when ;pecifications can most easily

be posed on the loop (-K)(-P).
4.3.3 Recovery at the Plant Output

We now give the steps for designing a controller based on the

recovery at the plant output method, using theorem 4.2. We will

-134-




éarallel the previous section as much as possible and will leave out
material that would be repetitive. The recovery at the plant output
method is to be used if the plgnt model is in both controller and

observer form so that theorem 4.2 applies, and if the specifications

are most naturally posed on the loop broken at the plant output, PK.

Step 1 (Modeling): Develop a model for the plant to be controlled
P=C¢B, as well as bounds on our modeling error, in the following

special form:

x(t)
y(t)

A x(t) + Ba(Cx(t)) + B u(t) (4.54a)

C x(t). (4.54b)

Note that this model is in both controller and observer form. If our
model is not orgina%ly in this form, we must try to find a state
transformation to bring it into this form. If the model does not fit
this form, we can still attempt this procedure, but we will not be

guaranteed the recovery step.

Step 2 (Specifications): Convert all available specifications into
specifications on the loop broken at the plant output, or T=PK.

Consult figure 4-1. We will call this the desired loop Tdes
Obviously, the more easily we can express our specifications in terms

of Tdes' the better off we will be. The specifications that can be

easily translated in terms of Tdes are
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(a) Nominal Closed-Loop Stability. Obviously T must be

des
closed-loop stable. In addition, since it will be realized as
PK for some K, that realization must be-internally closed-loop
stable as well.

(b) Output disturbance specifications. If Tdes is large for all
signals in some set, then the responsé to output disturbances in
that set will be small. Use the results of section 2.4 for
calculations.

(c) Command following specifications. Similarly, by the results of
section 2.4, if Tdes is large for all signals in some set, then
the error to commands in that set will be small.

(d) Robustness to unmodeled dynamics. We develop specifications for

v

bandwidth, etc. and can express them in terms of T he

des USiTE t
results of section 2.5.
The basic idea of this step is to capture all available

specifications. Thus, if a loop T meets these specifications, we

des
will be satisfied using it.

Step 3 (Target Loop Design): 1In this step we delovelop a target
loop that will meet all of the specifications of step 2. In this
variation of NMBC/LOR, we use a loop

Tdes = C¢H (4.55)
for some operator H. This gain H can come from many sources, as
detailed in section 3.3. We want to make sure that our final

closed-loop system will be stable, so we require that H produce a

nondivergent estimator in the context of figure 4-3. One possibility
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that we know will be nondivergent if the system is detectable is the
extended Kalman filter. Then we will have the following properties

for the desired loop T, _= C¢H:

des

(a) Nominal Closed-Loop Stability. The filter loop is guaranteed to
be closed-loop stable (corollary 3.6)

(b) Adjustable Performance. By varying the matrix = in the EKF
formulation, we can adjust the performance of the target loop
Tdes' For example, by making = larger, we increase the
performance and bandwidth. In the linear case, bandwidth
control is many times sufficient to develop a reasonable "first
pass” controller.

(c) Guaranteed Robustness. As shown in theorem 3.8, the loop C¢H
has many guaranteed properties, including good gain and phase
margins, if we select = larée enough so that H(t) does not vary

much from trajettory to trajectory. Thus we can automatically

obtain a fairly robust target loop.

Step 4 (NMBC Construction): We now construct the NMBC as shown in
figure 4-3. The gain H comes from step 3, and the gain G must be
chosen such that the closed-loop system is stable. The way to do
this is to use the separation theorem of section 3.2 to realize that
we should select G to be a stabilizing state feedback gain. This
could be done in any of the ways discussed in section 3.4, however,
because we will require that G have a special form tb enable us to do
loop recovery, we propose the folowing technique. We select our

state feedback gain G as:

-137-



G(x) = ct"n x + a(Cx) (4.56)

where Gtin is a matrix defined by
gkin - LTk | (4.57)
[ P

where K is the symmetric semi-positive definite solution to the

Ricatti equation:

0=ATK +KA +Q - %KBTBK. (4.58)

If C is sclected this way, it is clear that G stabilizes our plant

(see section 3.4.5), and also has the asymptotic behavior

lim vVp G = WC, V¥ invertible, (4.59)
p=0

if the linear plant (A,B,C) is minimum phase.

Step S (Loop Operator Recovery): In this step, we apply theorem 4.2

and let p approach zero. We have that

lim PK = C$H = T

. (4.60)
p=0 des

if H is a fixed time varying matrix H(t), a constant matrix H, or a
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nonlinear operator H. However, in the EKF case, the trajectory of
H(t) depends on the internal state of the compensator, as 3(t)
depends on the current compensator state z tﬁrough vi(z(t)). Thus,
the recovery process (4.60) cannot work, as the recovered loop C®H
does not have the same internal structure as each actual loop PK.
Thus, while we do get a convergence to a limiting operator in the
case of the EKF, this limiting operator, in general, is not C¢H.
However, we can still use the recovery process if we realize that we
had to have H(t) relatively constant over different trajectories of
the system in order that our guaranteed properties (theorem 3.10)
held. Here, if H(t) is relatively constant, then we can conclude
that (4.60) holds and we can get approximate robustness recovery,
with nondivergence guaranteed because we are using the EKF. As
indicated in section 3.3.4, we can get this cdnstancy property of
H(t) by choosing E=qBBT with q large. Of course, if we use the

CGEKF. or other constant gain observer, we do not have this problem,

as H is constant.

If we now assume that we do get recovery, we then can select p
sufficiently small so that our actual loop, PK, will approach the
target loop, Tdes' that we selected for its good characteristics.
Furthermore, we know that the system will be closed-loop stable
(including internally stable) for all values of p>0. Thus, for our
selected value of p, we have designed a compensator K that stabilizes

the plant P and meets all of the specifications.
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Step 6 (System Simulation): Just as in the previous section, we
must do many simulations to be sure that we have overlooked some
important specification and to check the ove;all system performance.
Again, if the system does not prove satisfactory, we must go back to
steps 2 and 3.

In section 5.4, we demonstate this recovery at the plant output'
procedure on a simple nonlinear pendulum model.

End of Design Procedure

4.3.4 Formal Loop Shaping

We now give the steps for designing a controller based on the
Formal Loop Shaping method [2], using theorem 4.3. This method is
most applicable if the specifications can most easily he poes in
terms of the loop broken at the plant output, as in the previous

method, and if the plant is open-loop incrementally stable.

Step 1 (Modeling): Develop a model for the plant to be controlled,
P=C¢B, and bounds on the modeling error. The plant should be

incrementally stable.

Step 2 (Specifications): Convert all available specifications into
specifications on the loop broken at the plant output, or T=PK.

Consult figure 4-1. We will call this the desired loop Tdes.
Obviously, if the more'easily we can express our specifications in

terms of Tdes' the better off we will be. The specifications that

can be easily translated in terms of Tdes are discussed in the
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previous section, step 2. Again, here idea is to capture all
available specifications, so that if a loop Tdes meets these

specifications we will be satisfied using it.

Step 3 (Target Loop Design): In this step we delovelop a target
looputhat will meet all of the specifications of step 2. In this
variation of NMBC/LOR, we can use essentially any loop we wish. We
select a system of the form (4.39)

Tdes = D¥H, (4.61)
where \l’lH[I-!-DNIll-I]-l must be stable. Since we are not constrained as in
the previous two procedure descriptions, we can place any dynamics we
wish in ¥. One possible choice would be a linear loop, designed with
either a Linear—Quadratic-Regulator loop, or a Kalmn filter loop.
Then we would have
(a) Nominal Closed-Loop Stability. The regulator and Kalman filter

loops are guaranteed to be closed-loop stable, and thus so is
WH[ I+DwH] L.

(b) Adjustable Performance. We can easily adjust the parameters in
the formulation of these optimaization problems to make the
target loop Tdes look like just about anything.

(c) Guaranteed Robustness. The LQ and KF loops have many guaranteed
properties [6], including (1/2,®) gain margin and +/-60 degrees
Phase margin. Thus we automatically have obtained a robust

target loop.

-141-



Step 4 (NMBC Construction): We now construct the NMBC shown in
figure 4-4, using the parameters that we have determiped in the
previous step. Note that we will require thét the closed-loop system
be stable. To insure this, we use the result of Q-parameterization

from theorem 4.4, which says that our system will be closed-loop

stable if
(a) [I+Gx<l>B]-1 stable,
(b) G WH[I+DVH] ! stable, and
(c) P is incrementally stable.

This can be seen by comparing figures 4-4 and 4-5, and applying
theorem 4.4. In addition, to do the LOR step, we will need to find

G and G such that
X.p

lim vp G, , = ¥C (4.62)
p=0 P

and -
lim vp G_ = WD. (4.63)
p_o ’p

One way that this can be done is to formulate an optimal control

problem as follows. For the system

[ ﬁ%i; ] = :f?i:lg) + [ 3 ] u(t) (4.64)

find u(t) to minimize the cost functional
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J(Xo0.50.u(+)) = %J: [ lox(e)+Ds(t)[® + p uT(t)u(t) Jde.  (4.65)

The solution will be expressable in the form
u=- gx(x) - gs(x) = - Gxx - Gss. (4.66)

By theorem 3.17, we can conclude that condition (a) above holds, and
using theorem 3.18 we can conclude (4.62) and (4.63) hold if certain
conditions analogous to the minimum phase conditions of linear
systems can be verified (see section 4.5).

Remark By using the trick of section 4.3.3, where we pick
u=-Gzinx—a(x) for our plant in controller form and make the state
feedback system linear, and by choosing D¥H linear, we can make the
minimization problem (4.64-4.65) a Linear-Quadratic—Regulator

problem, which is easily solved.

Step 5 (Loop Operator Recovery): In this step, we apply theorem 4.1

and let p approach zero. We have that

lim PK = DYH = T . (4.67)
p—0 des

If we select p sufficiently small, then our actual loop, PK, will
approach the target loop, Tdes’ that we selected for its good
characteristics. Furthermore, we know that the system will be

closed-loop stable (including internally stable) for all values of
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p>0. Thus, for our selected value of p, we have designed a
compensator K that stabilizes the plant P and meets all of the

specifications.

Step 6 (System Simulation): In order to be sure that all
specifications were in fact included in step 2 and that nothing was
neglected, we must do complete simulations, as in the previous

procedures.

End of Design Procedure

4.4 Design Hints

This section is an informal presentation of various ideas that
tend to be helpful in linear multivariable control design, and thus
will most certainly be useful for nonlinear control design. The
following two sectiqns discuss scaling of states, inputs, and

outputs, and augmentation with additional dynamics.

4.4.1 Scaling

This section will discuss the scaling of system variables to
make the system easier to deal with. One might scale a model of the
plant to be controlled in order that the controller design process
goes more smoothly and encounters fewer numerical difficulties due to
ill-conditioning. One might also scale the states of a controller
that had already been designed so that its implehentation could be

done with fewer significant digits in fixed-point arithmetic, or
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scale its inputs or outputs to make them compatible with the
interface equipment. Since there are many additional reasons for
scaling variables, we now consider the scaliﬁg process.
Consider a system
x(t) = £(x(t)) + B u(t) (4.68a)
y(t)

C x(t), (4.68b)

where the states, inputs, and outputs may have vastly different
magnitudes. We can choose a new set of scaled variables, u,. X, and
Y by choosing the scaling matrices Su' Sx' Sy so that

the new state variables

-1

Vg =8, ¥ (4.69)
-1

Xg = Sx x _ (4.70)
-1

u = Su- u (4.71)

each have components with roughly equal magnitudes. For illustration
purposes, we will now scale the variables so that each component has

a maximum magnitude of unity. We simply select

Sy = diag { max{yl}. max{yz}..... max{ym} } (4.72)
Sx = diag { max{xl}, max{xz},..., max{xn} } (4.73)
Su = diag { mag(ul}, max{uz}...., max{um) }, (4.74)
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where by "max"” we mean an approximate estimate of an upper bound for

the magnitude of that variable. The transformed system is

1

s 1 E(Sx (£)) + S,
sy’1 cs, x_(t). | (4.75b)

x ()

yg(t)

B Su us(t) (4.75a)

The advantage of using this new tranformed system is that all our
stability, performance, etc. criterion become less conservative, as
we always treated each component of, say x, equally. If one was in
tons and another in ounces, our bounds would become less useful.

Thus scaling all variables allows us to have a common reference point

n desi

~ f P -l
pre Coam e

to analyze or the system.

e
'Yy

f

It is also possible to "scale"” variabies nonlinearly, i.e. a
nonlinear change of coordinates. . One reason to do this is to try to
make the system "nicer” (read linear); the transformation designs
discussed in chapter 3 touch on this subject.

This is really all there is to scaling. It is very simple in
concept, yet in practice it is very difficult. The main difficulty
lies in deciding what the maximum values are. At times this involves
making value judgements about the relative importance of one variable
versus another. It frequently requires several iterations to reach a
reasonable scaled system, but in the end having such a scaled system

makes life much easier.
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4.4.2 Dynamic Augmentation

In this section we shall briefly discuss the process of dynamic
augmentation, or the addition of certain dynémics to produce
desirable effects in the final closed-loop system. We will present
an example showing the introduction of free integrators to reduce
steady state errors, although other dynamics might be desirable
depending on the circumstances.

Suppose we start with a plant model like (4.68) and we wish.to
design a controller to make the closed-loop system have zero
steady-state error to input disturbances, w, when we set r,d=0 in
figure 4-1. Suppose further that the system has no free integrators

in it, i.e. f exists. Then we add integrators to the output of the

system, and define a new output yp as

Y, = ¥ (4.77)

We now use the following as our design plant model: -

x(¢) 1 _ [ £(x(t) B
[ vp(e) 1~ [ Cx(t) ] + [ 0 ] u(t) (4.78a)
vt} = [0 T7 Ix(e) ] (4.78b)
’ Ly () |

We now apply the loop recovery at the plant input procedure,
described in section 4.3.2, so that we can shape the loop (-K)(-P) by

first shaping the target loop G#B. One possibility would be to use
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an optimal control formulation to obtain a good function G, which has

inherent robustness properties. From theorem 3.17, the "L, domain

2
inequality”, we have
NGB, _ U[I+GOBTull, _ _nceBuiz 1172
P —teP2 P = 2 + —— (4.79)
2,7 ally, hang

where ¢,B, etc. are the design plant matrices. If we pick
m(x):xTCTCx. we get the integrator action in G¢B (since it is in
CPB). Ve can see this because when CPB is large, GPB is also large
(we can neglect the p terms). Thus we can shape the loop G#B to our
liking and use the LOR procedure to make certain that the actual loop
(-K)(-P) approached the target loop GOR.

In our final NMBC, for constant disturbances we will have y
going to zero. This is because if it did not go to zero, then yp
would blow up, which it cannot do, because of the guaranteed
stability. This zero steady state error is guaranteed even if we do
not use the LOR procedure. We only require that the closed-loop
system be stable and thus that we incorporate a nondivergent
estimator into our compensator.

There are many variations possible on this theme. We could add
integrators at the input of the plant to improve low frequency
command following performance, or we could add resonant dynamics at a

particular frequency to improve disturbance rejection at that

frequency, for example 60 cycle hum in certain critical applications.
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We now conclude this section with the thought that since the
NMBC/LOR methodology is still in its infancy, when examples are
tried, many new tricks may be uncovered. Thére are still many linear
design tricks which seem likely to have their counterparts in the
nonlinear world. One of the more promising relations seems to be the
"L2 domain inequality” of theorem 3.17, which may lead the way to

loop shaping ideas, as will be mentioned in section 6.2.3.

4.5 Noominimum Phase Systems

This section will discuss the idea of minimum phase and its
relationship to the theory presented in this thesis. Recall that in
the linear case a minimum phase system is one that has all of its
zeros in the left-half plane, or equivalently, has a stable inverse.
We would like to make a similar definition for the nonlinear
§ituation. except that we run into a problem. Consider the inverse
of a nonlinear system P, formally written P-l. "Now, in general P-1
will not be "proper”, in that it will do some pure differentiations

on input signals. This causes problems, for consider a signal that

moves up in frequency indefinitely, for example

w(t)

Agsin(tw(t)),
where

w(t) = t2.

If we apply this to P-l. we see that we will have a growing output
P-lw. due to the differentiation. Put another way, to produce w=Pu,
we must have u growing without bound. The result of all this is that

the operator P_1 is unstable by our definition. Note that we have a

-149-



similar problem with linear systems, as P-1 is not, say. L -stable

either (impulses are not in ¥ ), but we get around this by just

considering the poles of P-l. or equivalentl}. the zeros of P. 1In

the nonlinear case, we do not have the luxury of being able to check

zeros easily (although see [64] and below). Two possible ways to

still retain the idea of stable inverse are:

(a) Only allow signals with no frequency component above

some cutoff frequency when considering the minimum
phaseness of a system.

1

(b) Consider the stability of XP = or P_IX, where X is a

linear system with n poles and no zeros, e.g.
1
(Ts+1)n

for some fixed T>0.

X =1

The reason that we care about minimum phasenéss is that in the
iinear case, we must have a minimum phase plant in order to obtain
the lobp transfer recovery. The reason that this is the case is
fairly straightforward. Since the recovery procedure involves the
approximate inversion of the plant and right-half plane zeros cannot
be cancelled in a stable manner, we have a problem. Note that the
reason recovery works for open-loop unstable plants is that the
dynamics of the recovered loop (say G¢B) are the same as the plant
(C#B). so that the open-loop poles do not really get cancelled. We
could have recovery for minimum phase plants if we selected the
target loop to have the same "zeros" in the right-half plane as the

plant (See [2] for the linear case).
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Although we did not mention the minimum phase assumption in
previous sections of this chapter, it was already built into one of
the key assumptions: the asymptotic behavio} of Hﬁ and Gp. In the
linear case, the results of [63] indicate that we will get the
correct asymptotic behavior of Gp only if the orginal plant»is
minimum phase. The limit Vo of theorem 3.18 is zero for minimum

phase plants, and thus

lim vp G = ¥WC. (4.82)
p-0

Therefore, we could make the following tentative definition.
Definition A plant C¢B is minimum phase if there exists a set of
state feedback functions, Gp' parameterized by p, such that (4.82)
above holds, and Gp stabilizes the plant for all p>0.

In [64] a alternate definition for minimum phaseness is given
for relative degree one nonlinear systems which seems to be rélated.
The definition involves transforming the nonlinear system in such a
way that the zero dynamics are exposed. They define the system to be
minimum phase if the zero dynamics are stable and show that minimum
phase systems can be stabilized by high gain feedback. Upon
preliminary investigation it appears that this definition is
equivalent, with suitable technical assumptions, to our notion above
of a stable inverse.

We would like to use one of these definitions to show that
recovery works if and only if the plant is minimum phase, but it

appears that this may not be necessary. If we take a lesson from

-151-



linear théory, we realize that right-half plane zeros put performance
restrictions on systems, independent of the methodology used to
design the controller [65]. In the LQG/LTR methodology, it is
recommended that the LTR procedure be tried even when dealing with a
nonminimum phase system. This forces the controller to find the
"best"” stable inverse to the plant and substitute the target loop
dynamics. Thus poor recovery (performance) is obtained in certain
frequency ranges, but since we have right-half plane zeros, we have
to settle for reduced performance anyway.

Thus we recommend for the NMBC/LOR methodology that one lets p-0
in whichever algorithm one is using to generate Gp (optimal control,
tranformation methods, etc.). Simulations will determine whether or
not the recovery has taken place, and for which signals. Note that
for the transformation methods, minimum phase behavior is determined
by the minimum phaseness of a linear system and thus can be eaﬁily
checked. Similar remarks hold for the recovery at the plant input

and formal loop shaﬁing procedures.

4.6 Critique

In this section we discuss the NMBC/LOR loop shaping philosophy
relative to other possible schemes on a sound basis. We will attempt
to discuss informally the robustness of different types of designs,
using loop operators, which, as we saw in chapter 2 are the rélevant
quantity in unstructured robustness analysis.

This thesis has been concerned with the design of a compensator

K so that the closed-loop system of figure 4-1 has good properties.
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In particular, we were concerned about either the loop broken at the
plant input, (-K)(-P), or the loop broken at the plant output, PK,
and we were able to design either one of theﬁ to have good robustness
properties, with some restrictions. Thus we were able to design
within the bandwidth constraints that every physical system has. -
Let us now consider a different design strategy, which we will
call the heuristic method. Suppose that we could design some sort of
feedback that would linearize our plant. We might do this for a
plant in controller form by measuring or estimating accurately the
states needed to linearize the plant in the framework of section
3.4.5. Then we could apply linear methodologies to the linearized
plant. We show a generalized version of this idea in figure 4-6.
Note that we could consider it a two-step compensation process, where
the first step consists of an inner loop compensator, K,, which makes

P linear, i.e. so that

P[I+K,P] } . (4.83)

is linear. The second step consists of an outer loop compensator,
K2. using, say, LQG/LTR, so that we have good loops broken at either
the "input"”, point (i), or the "output”, point (ii). We use quotes
here because they are not the same loop breaking points that we
really care about for robustness, which are either at the plant input

(iii) or the plant output (iv). This is an inherent problem with the
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Figure 4-6:

Two-Step Compensation
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two-step compensation process, and with any other procedure, where
the loops that can be molded are not the same as the "true"” loops
that we wish to design.

As a more concrete example, we might design K, so that we got
excellent command following performance in figure 4-6. This would be
‘done by shaping the loop broken at point (ii). We might even be
careful not to exceed what we thought were the bandwidth constraints.
But what is the true bandwidth? The actual loop that is important
- for robustness is the loop broken at point (iv), which is not easily
related to the design loop (ii). We might have a much faster loop at
(iv) than at (ii) and thus all our efforts to design well at (ii) did
not help us at all at point (iv).

Note the the external linearization methods [21,22,23,24,25,26]
are of the above two-step compensation procedure. However, as we
pointed out earlier in this chapter (thr&ughout section 4.3), there
are ways to use their results in the NMBC/LOR framework to achieve a
single-loop design that does not suffer from the above drawbacks.

The above is one of the strong points of NMBC/LOR, namely that
it can be used to control the loops at the true plant inputs and
outputs. Specifically, it can be used to make them robustly
closed-loop stable and have the desired performance. However, it
does have some restrictions when we are concerned with shaping the
loop at the plant output. For example, recovery at the plant output

requires that our plant be in both controller and observer form,
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which is very restrictive. The formal loop shaping (FLS) procedure
allows us to arbitrarily shape the loop at the plant output but
guarantees closed-loop stability (for the time being) only for

incrementally stable plants.
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CHAPTER 5. A NUMERICAL SIMULATION

5.1 Introduction
In order to demonstrate some of the details of the NMBC/LOR
methodology, we present the results of a very simple numerical

simulation. Using a model of a damped swinging pendulum, we attempt

to illustrate the following:
(a) Convergence of the estimation error as the extended Kalman

filtering noise parameter u goes to zero, in a demonstration of

theorem 4.1
(b) Recovery at the plant output.
(c) The guaranteed gain margins of the EKF and recovered loops.

(d) A “"frequency sweep”" technique for analyzing sensitivity

functions.

(e) Use of the "frequency sweep” technique to show the properties of

the EKF and recovered loops.

5.2 Plant Model and Compensator

For the purposes of this simulation. we selected a simple damped

pendulum model:

X

f(x) + B u (5.1a)

y=Cx (5.1b)
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or
B[ <R o - 1 (5-22)
y=[1 0] [::] (5.2b)
2
where the variables are -

angle of ﬁendulum. in radians, with zero

X4 =
chosen as down.

Xy = angular velocity of pendulum, in
radians/second.

u = input torque to pendulum.

We do not restrict the states in this model, so that for example,
x,=37 is pointing straight up, after going around one full
revolution. Note that this makes our model unstable for inputs with
magnitude greater than unity, as the torque is high enough to cause
the pendulum to keep spinning around, and thus, for x,(t) to be
unbounded. The linearization of the model at the origin (x,=0) gives

poles at

I
- with a magnitude of 1.0 rad/sec and a damping coefficient of 0.5.

Ve next consider the compensator that we will use. Note that
our ﬁodel above (5.1) is in both controller and observer form. Thus
we decided to use a transformation state feedback controller, as
discussed in section 3.4.5. Since we can place the closed-loop poles
arbitrarily (the transformation controller gives linear closed-loop

-

dynamics), we decided to parameterize them by p>0 and place them on a
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Butterworth pattern. We chose as our state feedback function

u=-g,(x):

gp(x) = sin(x;) + x, + [—-};—-]sz1 + [—;—]1/4x2. (5.3)

We chose this function as it has the following properties:

_(a) The closed-loop system with u=—gp(x) is stable for p>0.

(b) Asymptotic convergence:

1im VP g (x) = x4 = Cx. (5.4)
p-0 p

(c) For each p>0, there exists a kp such that
lvg ()| Sk, v x€RZ, (5.5)

We need the properties (a) and (c) to be able to use the separation
theorem (theorem 3.1) of section 3.2, while property (b) will be
needed to use the recovery theorem (theorem 4.2) of section 4.3.3.
Turning to the state estimator design, since our plant (5.1) is
in observer form (section 3.3.6), we could use a transformation based
observer technique (section_3.3.6) to design a nondivergent observer,
but with no other priori guarantees. Thus, instead we chose to use
an extended Kalman filter, with its guaranteed robustness properties
(section 3.3.4). As presented in section 3.3.3, there is really only
one design parameter for the EKF, namely the symmeiric positive
semi-definite matrix 5. The other parameters are 35, the intial
condition for the covariance, and the intial time t, for the
covariance propagation to begin, i.e. 3(ty)=3,. We simply chose
20=0, and tg=-4 seconds. This was determined by simulation to be

enough time for the covariance equation to reach roughly steady state
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for tﬁe linearization point x=0. Remember that we do not start the
state equations (5.2) until the EKF has had sufficient time to
intialize itself (section 3.4.3). This does-not mean that if the EKF
happens to encounters noise and drifts from the true state that it
will need to be reinitialized; its nondivergence is guaranteed by
theorem 3.6. It is more a matter of not starting at a bad 35 than
having to select the "correct” 2.

We selected the design parameter E:qBBT. where q>0. Ve will
think of q as 1/u in the r;covery theorem 4.1. Note that since = is
not full rank, we cannot guarantee the nondivergence of the EKF by
theorem 3.6.un1ess we can check the uniform controllability of
[vf.B]. It was decided to just go ahead without that theoretical
justification because it was felt that (a) the system was intuitively
controllable through B, and (b) it would be useful to show that the
EKF could be used succéssfully without a Iot of technical
restrictions having to be checked for each case.

Since we have designed a nondivergent estimator and a
stabilizing‘state feedback function, we can now put them together by
choosing u=—gp(;). and utilizing the NMBC/LOR structure depicted in
figure 4-3.

The following sections are now devoted to the simulation of this

NMBC/LOR closed-loop system, in order to demonstrate its various

properties.

-160- ’ |




5.3 Convergence of Estimation Error

As proved in theorem 4.1 (recovery at the plant input), when r
and d are zero, then ;ﬂx (since z is ; when ;=0) as p=0 in any
nondivergent estimator where the gain H,.1 obeys

lim H Vi = BW (5.6)
wo B

for some invertible W. Then it becomes clear that the rest of

theorem 4.1 holds, namely, that

lim (-K )(-P)(u+w) = lim (-Gz) = -Gx = -G¢B(u+w) (5.7)
wo M p=0

where u+w is the input to the plant in the structure of figure 4-1.
We now demonstrate this convergence. With u,d,r=0, we simulate

the stepAresponse in w. Thus the estimator obtains information about

this step only through observation of the output of the plant, y.

The simulation is shown in figures 5-1 and 5-2 for various values of

q. where E:qBBT. Figure 5-1 contains the state estimates (since r=0,

. x=z) for a 0.80 magnitude s¥ep in w, while figure 5-2 shows the

estimates for a 1.20 magnitude step in w. Note that we get
convergence of the state estimates to the actual states as q-w.
Since the estimator is presumably nondivergent, we expect that the
error between the actual states and the estimates should be bounded
in time for each value of q (because the input w is), and we can see
that it is. This is true even when the response of the states is
unbounded, as in figure 5-2. As noted in the previous section, we

expect to see unbounded behavior for step inputs to the plant larger

than unity in magnitude.
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5.4 Recovery at the Plant Ougput

We now demonstrate the recovery procedure at the plant output.
Our plant and compensator are already set up.in a form suitable for
us to use theorem 4.2, i.e., the plant is in both controller and
observer form, the state feedback linearizes the plant, and we have
the asymptotic behavior (5.4) that we require.‘

Figures 5-3, 5-4, 5-5, and 5-6 show the step responses of the
closed-loop system for step magnitudes of 0.10, 1.00, 3.14, and 4.71,
respectively. In each plot, we can see that as p=0, the closed-loop
step responses converge to the closed-loop step response of the CPH
loop, i.e. letting r(t):Au_l(t) be the step response, we see

PKP[I+PKp]-1 - c¢H[1+c¢H]‘1 as p-0. (5.8)
Noie that the shape of the responses for different input magnitudes
ére very close to each other (obviously, in a linear system they
would all be scaled versions of each other), which indicates that we
are using a fairly large gain for COH. This is good because large
gains ensure the constancy of H(t) which helps in two ways: (1)
recovery is guaranteed (see section 4.3.3, step 5), and (2) the
robustness properties of the EKF loop (CPH) are ensured (section
3.3.4, theorem 3.11).

Ve now verify one additional property of the recovery at the

plant output theorem 4.2, namely, that we expect

Cz=2z, -0 as p=>0. (5.9)
We show thé compensator state, z, in figure 5-7, for the particular
step response with magnitude 1.00 (corresponding to figure 5-4).

Note that we do have z,-0 as p-0.
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‘5.5. Gain Margin Tests

We now check the robustness of our closed-loop system to gain
variations. Theorem 3.11 tells us that if w; have a sufficiently
constant H(t), then we will have an infinite upward gain margin. As
discussed in section 5.2, since we selected a fairly high q, we
expect that H(t) is éelatively constant. To check this, we perturbed
our plant by scaling the output by the factors of 2.0, 5.0, and 10.0.
the respective step responses are shown in figures 5-8, 5-9, and 5-10
for a step input magnitude of 3.14, corresponding to figure 5-5. Ve
see in these plots that (1) the target loop C¢H[I+C¢H]_1 is stable
for all the gains 2, 5, and 10, and (2) the actual loops PKp[I+PKp]—1
approach the target loop as p-0, and thus approach the target loop in
their gain margins.

Consider first figure 5-8. Here wé have one closed-loop
response that is unstable (or marginally so), the one corresponding
to p=10-2. The others are all "closer"” to the target loop, and have
a higher gain margin. In figure 5-9, with a gain perturbation of x5,
the responses for the cases p=10“2 and p=10-4 go unstable, while the
responses for the systems with better recovery remain stable
(although the case p=10-6 is starting to be oscillatory). anally,
in figure 5-10, with a gain factor of 10, the case p=10.6 also goes
unstable. However, the cases p=10-8 and p=10-10 are still stable.
This is because, roughly, (thinking of linear systems) they have

recovered sufficiently so that they match the target loop over the
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"frequencies” of interest, namely, up to the crossover of the
perturbed system, which is higher than the original crossover, due to
the action.of the gain perturbation. .

Thus we have shown that
(a) The target loop has a high gain margin, and

(b) The actual loops recover this gain margin as p-0.

5.6 Sensitivity Computation
We now turn to a demonstration of one idea for analyzing the
sensitivity of nonlinear systems. Figure 5~11a shows a swept
sinewave of increasing frequency, given by -
r(t)
w(t)

Ve want to use this signal to evaluate the sensitivity operator for

3.14 sin(tw(t)) (5.10a)

(.4)-10" (5.10b)

our system and thus we must

(a) choose a wide enough range to cover all the behavior of our
system, and

(b) shift frequencies slowly enough that we give the system enough
time to adjust to each new frequency, and

(c) wuse an exponential function so that the response can be viewed
as having a logarithmic scale in frequency.

The r selected above (5.10) has these features.
In figure 5-11b, we show the sensitivity reponse to this signal

r, i.e. plots of [I+C¢H]-1r and [I+PKP]-1r for p=10-'1 and p=10-6.

The first thing we should observe is that recovery still takes place

as we let p-0.
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The second thing we should note is the demonstration of one of
the guaranteed properties of the EKF (theorem 3.11):

N[I+CEH] M € 1 + ' (5.11)
where v is quite small here, since we used a fairly high gain. This
is seen by the absence of "overshoot"” in the sensitivity plot. If we
think of the envelope of the response to r as our sensitiviéy plot
versus frequency, we see that for all frequencies, the sensitivity
operator has gain roughly less than unity. Note that by the
robustness theorems of section 2.5, we know that this imples that our
loop is robust.

The third, and final thing to note about figure 5-11b is that
for p=10-1. we do not achieve a good recovery, and in addition, the
“logp is not very robusi, as the sensitivity operator has a gain of
approximately 3 for some frequencies. Note that this peak in the
sensitivity curve is not at the natural frequency of the pendulum (1
radians/second or a period of 6.28 seconds) but rather higher, at
roughly 2 radians/second. This corresponds to the "crossover"
frequency of the closed-loop system, with the peak occuring because
of a too rapid crossover (not enough phase margin).

As another possible use of this type of sweeping sinewave is in

the evaluation of L2—norms. In figure 5-12, we plot versus time, t,
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]1/2 5.12)

t
';%7 irlly , = [ %-j; Ir()|? ar
t

(5.13)

L upzeconytrn

172
|

t
o ¢ = [ %-I; l{[1+CoH] 1r}(7) |2 ar

1 -1 1 (* -1 2
:;T'“fI+PKp] rly o = [ ;-I; |{[I+PKPJ r}(7)|¢ dr

t

]1/2 . (5.14)

for r given by (5.10). We have normalized by vt so that the
quantities do not keep growing as the simulation progresses and thus
we can see everything on the same scale. Note that (t-1/2)HrH2't
becomes relatively constant because we are essentially plotting the
average magnjtude of the signal. Again, we see the recovery process,
and in addition we show the inequality for the EKF loop

NI+CoH] 1rn

< el (5.15)

2,t 2,7’
As we let p-0, we see that the actual sensitivity approaches (and
meets) this inequality as well, thus showing the robustness of the
recovered loop.

v
5.7 Conclusion

This chapter has attempted to demonstrate using a very simple
example some of the NMBC/LOR techniques, in order to convince the

reader that these convergence facts really are true, and that the EKF

really has some guaranteed properties. Obviously, they are not the
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exhaustive simulations that would have to be done in an actual
design, but rather, they are meant to simply illustrate some of the

ideas expressed in this thesis.
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'CHAPTER 6. CONCLUSION

6.1 Conclusions

This thesis has proposed a new methodology for the control of

multivariable nonlinear systems, that includes the issues of

(a) closed-loop stability,
(b) peformance, and
(c) stability robustness.

The methodology is an extension of a successful linear theory,
LQG/LTR. Under suitable assumptions, almost all of the relevant
linear theoretical results can been extended to the nonlinear case,
although computationally things are more difficult.

The robustness that the results guarantee is not an
"e-robustness', with very sﬁall margins (e.g. there exists an e>0
such that the gain margin 15 1+e), but rather a much better kind.
Our goal is to guarantee large robustness margins, which translate

into gain margins from -6dB to +», and phase margins of 60 degrees,

-in a multivariable sense.

In the global methodology, a main feature is the unification of
both I/0 analysis methods and state space synthesis methods. Any
practicai methodology must ﬁse 170 analysis for robustness tests, as
unstructured unmodeled dynamics are impossible to capture in a finite

order dynamical model. Operators are relatively easy to analyze (by
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simulation) but extremely hard to synthesize (or calculate
explicitly). On the other hand, state space methods are relatively
good for calculations (the extended Kalman filter,
Hamilton—Jacobi-Bellmén equation, etc.). We thus split our theory in
half: we do afl analysis operations with I/0 techniques, as
discussed in chapter 2, and we do all synthesis operations with state
space formulations, és discussed in chapter 3. These are then
combined together to create what is hopefully a coherent methodology,
as discussed in chapter 4, where the best of each ideology is
utilized.

We now present a few of the less global conclusions that we wish
to make.

It appears that nonlinear systems have much in common with
linear time-varying systems, as is evidenced by the results of
section 2.3.4. There it is shown that incremental stability of a
nonlinear system is equival;nt to the uniform stability of the
linearized time-varying systems about all possible nominal
Atrajectories.' In addition, the extended Kalman filter for nonlinéar
systems (sections 3.3.3 and 3.3.4) has many guaranteed properties as
a result of the properties of the linear time-varying Kalman filter
(theorem 3.7).

One of the guaranteed properties of the extended Kalman filter
is its nondivergence. We show in theorem 3.6 that if a system is
detectable, that is, if any nondivergent estimator can be built for
it, then the extended Kalmaﬂ filter will also be nondivergent. This

" has important ramifications for controller design as well as for
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problems in which nonlinear estimation is the desired end result. It
is important to ﬁote that even in applications where it appears on
the surface that estimation is the desired eﬁd result, usually the
estimated information 'will be fed back in some way to provide control
action. In that case, a guarantee of nondivergence could be quite
reassuring.

Ve also-show in this thesis how the external linearization
results of other researchers can be used in a nonlinear model-based-
compensator structure in a way that does not forfeit good loop
shaping properties. Transformation methods may be used to generate a
model of the plant in controller form to obtain a state feedback
function (section 3'3f6)' which can be used in the recovery procedure
at the plant output (section 4.3.3). These methods could also be

used to generate.a model in observer form (section 3.4.5) to obtain a

nondivergent estimator.

It is hoped that the results from research on other
methodologies will be able to be used with the research presented
here as well. For example, the analysis tests of chapter 2 (sections

2.3, 2.4, and 2.5) are useful for judging any proposed nonlinear

control methodology.

In sections 3.4.2. and 3.4.3 we presented results pertaining to
optimal nonlinear régulators. Even though it is at present quite
difficult to solve the Hamilton-Jacobi-Bellman (HJB) partial

differential equation, we show that its solutions have some very nice
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guaranteed properties, and hope that this presents some motivation
for further research on its computation (see the next section for
some ideas).

Slightly harder to compute than the HJB equation is the costate
obsefver partial differen;ial equation, discussed in appendix C. The
solution of this equation, has many guaranteed properties, and if
certain extra conditions are satisfied, may prove to be a
nondivergent estimator. It has the advantage of being a spiritual
dual to the HJB equation, even more so than the EKF.

Far harder to compute than the HJB or costate equation is the
optimal nonlinear filter, as discussed in section 3.3.2. This
essentially requires the storage and update of every point-in the
state space at each discretization interval. Current computational
technology is still not good enough to do this for all but the
simplest problems. Perhaps_further research/technology will change
this. Computationally difficult though it may be to solve, the
solution to the optimal filtering problem enjoys the same robustness

properties of the EKF and costate observer (see appendix D).

6.2 Future Research Directions

The next three sections are devoted to discussing in some detail
the possibilities for future research and extensions relating to the
results presented throughout this thesis. We do this in sections
roughly paralleling the chapters of the thesis: section 6.2.1 covers
the analysis results, section 6.2.2 cerrs synthesis results, and

section 6.2.3 covers the integration of the two ideas.
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6.2.1 Anpalysis

One of the main difficulties-with the aﬁalysis results of
chapter 2 is the posing of specifications. As mentioned in section
2.6, we might want to use describing function ideas to pose
specifications in a way_that humans can comprehend (i.e. not just a
listing of every possible input paired with each desired output).

A related issue is the actual calculation of tests which require
that a certain condition hold for all signals in some signal space,
such as is required for the robustness tests of section 2.5. We need
some results that say, in effect, that if a system is smooth enough,
we only need to check the conditions over some "dense" set in order
to guarantee that they hold over the whole signal space. This dense
set will need to be much smaller than the usual mathematical
definition of a dense set; we want to be able to calculate these

conditions fairly quickly.

6.2.2 Synthesis

The first thing that needs additicnal work in chapter 3 is the
extended Kalman filter. For example, the conditions requiring
controllability through 51/2 should be looked at closely so that
perhaps conditions can be developed for checking this.

In addition, it would be nice to be able to relax the

restriction on the boundedness of the first and second derivatives of

the function f. Since the EKF is essentially a first order
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approximation, it appears that the iterated extended Kalman filter
[39,46] might prove nondivergent under f's with some polynomial
behavior with degree higher than oﬁe.

It seems also likely that the EKF should have some guaranteed
stochastic propérties, especially in the area of local optimality.
Since no filter can be better for small noises (and thus small
errors), we should be able to prove some optimal local properties.
Then by the extension trick of theorem 2.4, we might be able to
extend the optimality to a more global property.

Another area that might benefit from the results on the EKF is
that of time-varying systems. Theorem 3.7 shows that the normal
linear time-varying Kalman filter has the same robustness properties
as the steady-state version. Perhaps this would he of use in the
design of estimators for time-varying or gain-scheduled systems.

The Hamil ton-Jacobi-Bellman partiai differential equation is
certainly a big research area in itself. While there has been some
research on the actual calculation by pélynomial_approximation
[56.57]. other methods may have better potential. One possibility is
a transformation based one. The linear version of the HJB equation
is the algebraic matrix Ricatti equation, and one of the ways of
solving the Ricatti equation involves factoring the Hamiltonian
system into two parts: (1) a part with all the stable modes and the
mirror images of the unstable modes, and (2) a part with all the
unstable modes and the mirror images of the stable modes. This then
allows the actual solution to be computed. It seems that a nonlinear

version of this factorization may be possible, in which the
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Hamiltonian system (from the Maximum Principle of Pontriagin [52,66])
can be transformed in such a way that the unstable and stable "modes"”
are separated, allowing one to compute the oﬁtimal cost—-to-go.

_ Another, less exotic, method for calculating the solution to the
HJB equation relies on an iterative real—piﬁe procedure. Pick aﬂ;
algorithm to calculate g(x) for a fixed x. This requires solving the
two-point-boundary-value-problem (TPBVP) and can be done by a
steepest descent algorithm, for example. The important thing to
realize is that these algorithms can be designed to converge very
quickly for initial trajectory guesses that are close to the optimal
ones. Thus, we can use them in real-time, if our system does not
move too fast. The idea is as follows. Suppose we are at time t,.
We start with an intial guess for the optimal control u?(~) and state
xT(') trajectories s}arting from the current state x(t,). We apply
the control u?(t,) to the system. At the next time step, we will
have a slightly different state x(t,+At);x(tz), also different from
the expected state x?(t1+At)=xT(tz) due to disturbances. We then use
the old trajectories as starting p;ints in our algorithm to compute
the new optimal trajectories. Since the time steps must be
reasonably small, the old and new trajectories should be close, and
thus we can converge quickly, perhaps in one step, to the new optimal
trajectories u:(°). x:(')starting from x(tz). We then use as our new
control u:(tz) and continually repeat the process. This procedure
might prove to be very computationally efficient. It also avoids the

problem of storing g(+)., i.e. g(x) for each value of x.
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Another area of research involving the HJB equation relates to
the incremental properties of its solution. We would like to develop
conditions on the optimal control problem (i:e; on B, f, and m(-))
that would guarantee that we have an incrementally stabilizing state
feedback. There has been Some research on the incremental stability
of optimal control solutions (called the second variation [67,68])
but only as they relate to perturbations about the nominal optimal
regulator trajectory (i.e. zero input case). Perhaps these results
could be extended to the case of arbitrary nominal trajectories.

If conditions could be developed for guaranteeing that the
optimal regulator was incrementally stable, it seems likely that they
would apply to the costate observer as well, due to the similar
mathematical structure of the HJB and costate observer partial
differential equations. 'As indicated in appendix C, if the costate
observer can be made incrementally stable, it would be a nondivergent
state estimator. This woula provide a potentially more attractive
observer than the EKF, due to its lower dimension (order n versus

order n + (n+l1)n/2).

6.2.3 Compensator Design

One of the important areas from chapter 4 needing additional
work is the relaxation of some of the restrictions on the recovery
procedures. Recovery at the plant output currently requires a quite
resﬁrictive plant model: the plant model must be in both controller
and observer form (theorem 4.2).  This requires that all the

nonlinearities be directly controlled by the input, and be functions
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only of the output. One possible avenue of research would be to
remové some of these restrictions on the allowable class of models
for recovery at the plant output. |

If these restrictions cannot be lessened, it may be possible to
extend the‘results for the formal loop shaping‘(FLS)‘procedure
(theorem 4.3). While the recovery process itself does not require an
incrementally stable plant, in order to guarantee stability for the
closed-loop system with FLS, we must currently have a plant model
which is incrementally stable. It would certainly be desirable to
remove this restriction. In the linear case, [2] shows how to do FLS
with unstable plants. This indicates that there may be some
possibility that the FLS compensator could stabilize an unstable
plant.

Another important area for’research involves the idea of minimum
phase behavior. It would be helpful to have a rigorous definition
for miﬁimum phase systems that would capture the idea of
non-invertibility. Perhaps the literature on invertibility of
dynamicalAsystems would be of use [69,70]. With this type of result,
cne could quantify the conditions under which the H.JB equation gives
the asymptotic behavior needed for recovery, namely that the optimal
cost and its derivatives goes to zero as the control weighting goes
to zero. In addition, perhaps the results of [65] could be extended
to give limits on possible performance for nonlinear systems with

nonminimum phase behavior.
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A totally different approach to linear control systems design
than that of LQG/LTR is the factorization approach [71], which treats
systems as ratios of stable polynomials. In.appendix E, we discuss
how these factorization ideas might be extended to the nonlinear
case. We show there how the ideas of state feedback and state
estimation are related to factorization. Perhaps these ideas can be
extended and made more precise.

Another idea that could use development is that of loop shaping.
We tried to give a sample of this in section 4.4.2, where we used the
L2—inequality to give some rough handle on the optimal regulators
loop operator, in a manner reminiscent of the properties of the
Kalman frequency domain inequality [2,72]. Perhaps other asymptotic
results could be derived for the optjmal regulators loop operator.
For example, a useful formula would be an approximation to the loop
operator "at high frequencigs", i.e. for those signals where GéB is
small. This would allow a designer to control the aprroximate

_crossover behavior of the closed-loop system, as is done in the
LQG/LTR methodology.

Along the lines of loop shaping, we remark that in the linear
theory there has been a lot of research on H, control design methods,
where the H_-norm of weighted sensitivity functions is minimized.
In [2] it is shown that LQG/LTR can be interpreted in terms of an H,

minimization of weighted sensitivities. We now show here how we

might interpret a minimization of the system closed-loop gain as a

minimization of weighted sensitivities, as was done for the linear
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case [2]. Let

X = f(x) + Bu + Bw | (6.1a)
y = Cx + pd ' (6.1b)
z = Mx, . (6.1c)

where M may be a nonlinear function of x, and the variable z is an
auxiliary variable chosen as the important variable that will be
weighted in the optimizgtion problem. The function M is analogous to
the state weighting function of the optimal regulator theory., m(x),
i.e.

In(x(e)) | = l2(e)|? = Iux(e) (2. (6.2)
Let K be a given compensator, and let QK:(w.d)»(z.u) as depicted in
the closed-loop arrangement of figure 6-1. Suppose that we can solve

the following minimization problem:

Lp-Hinimization Find K to minimize

Q,(w,d)l .
. K P.T
QI ‘= sup . . - (6.3)
K'p w.d Il(w.d)llp._r
720

We now pose a different minimization problem, which we will show

is related to LP-minimization.
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Figure 6-1: Lp—Minimization Problem
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Weighted Lp—Sensitivity Minimization Find K to minimize:

2 . 2 172
sup . "QK(W’O)"p.T _ sup [ HJSpr'T+ "Tw"p,T ]
w H(w,0)Il T oW A 2
>0 P.T >0 - "w"p.T

where J is a given weighting operator, and
S = [I+(-K)(-P)]"*

is the sensitivity and |
T=1-S8

is the complementary sensitivity.

(6.4)

(6.5)

(6.6)

This problem for p=2 is similar to the H, problem of linear

systems theory. It is quite easily proven that if we let J=M®B and

let p=0, then the solution to the Lp—minimization problem becomes the

solution to the corresponding weighted Lp—sensitivity minimization

problem.

This raises some interesting points:

(a) Suppose that we could solve the Lp—minimization problem (6.3)

(which may be quite difficult). Then we could solve the

weighted Lp—sensitivity minimization problem (6.4), using the

same algorithm.

(b) How can the Lp—minimization problem be solved? Perhaps it

involves the solution of the general stochastic optimal output

feedback control problem [53]; hopefully it will be much easier.
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(d)

To what extent does the NMBC/LOR or FLS compensator presented in
this thesis approximate the solution to either of the above
minimization problems?

pr might this type of analysis be of help in extending the H_
design methods to the nonlinear case, or perhaps in helping us

to understand the NMBC/LOR methodology more fully?
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APPENDIX A. Proof of Theorem 2.4

Proof (if) The derivative condition on f implies [8]

that given an >0 there exists a 6m(e) so that

5] < 5.(e) => la(x.8)] € e |6] (A.1)

where

g(x,8) = f(x+6,t) - f(x,t) - vf(x,t)s. (A.2)

Let ¢(t,7) be the state transition matrix for the linear time-varying
system (2.52). Since it is L stable, there exists an N such that

[8]
J:N(t.f)l dr { N (A.3)

Consider two trajectories of (2.50):
x4= Pu (A.4)
xz = P(u+w) ‘ (A.5)
for any u,w and let e=x,-x, be the error between them. We now make

use of the following intermediate result.
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Lemma A.1 [8] For the above situation, we have

(a) For all >0, He“w.T < Gm(e) implies that

1 k
lell, . € 7oy M€l o € Tooy W,

1-eN
k

(b) If Ilwllm'_r < 5m' then (A.6) holds.

Proof of Lenma We have
é = f(xz2,t)-f(x4.t) = v _f(xs.t)e + g(x4.e) + v

and so

e(t)

, |
[ote. ) + gt (m).e(m1er

(o]

t
E(t) + I o(t,7T)g(x:(7).e(7))dr

o

Pick e<1/N. If llell, < & (e) then

t
e < 6] + [ eloce.r)|-le(r) lar
< [E()] + eN nen,

and

ell gN + eN lell
o, T $ng o T o T

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

Since we picked e so that eN<1, we have result (a) of the Lemma.

Result (b) follows from (a), since as we pick w small enough, § is

bounded and thus e is small enough to guarantee the hypothesis of

(a). B (Lemma)
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We now finish the proof of the theorem by extending the lemma
result to the entire input space, not just small inputs. Let w€Y and
T€R, be arbitrary. Let r==HwHT which must be finite. Now pick an
integer n large enough'so that

1-eN
r < n < 5m (A.11)

Then we have

lell, .= WPu - Plusw)il, _
1 1 2 2
= ||Pu - Pruswly + P(utwy) - P(utwd) + P(utwd)-...

n-1 n-1 n
- P(u+w—n—) + P(u+wT) - P(u+w;) ”00

< |pu - P(u+w%)"m +pasdy - Pand)|  + ...
» T

* lrntsy - pn)]

k k
S ne— 1-eN "W"m'_r = m "w"“’,T' (A.12)
because
1 r 1-eN
Hﬁwum’T == < ” 5m (A.13)

is small enough to allow us to use the Lemma.
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Proof (only if) Select an arbitrary trajectory x,€¥ with associated
input u as in (A.8). Select a trajectory pair v,f€¢ for (A.3), fix

T€R,, and pick e < 1/k. Now let

5 (€)
T= u‘;u : (A.14)
oo.-r

If we¢¥ is chosen so that e=7f then

wv = g(x4.e) + w (A.15)
and

1 k k

Hfﬂm'T = H; e"m'T < ;-Hw“w'T = Hﬂv-g(xi,e)nw'T

<k Hv"m'T + ek ugum’T . (A.16)

Therefore -
k-
Hfﬂm’T < Tk Ilvllm.,r (A.17)

and since T was arbitrary, and e could have been any smaller number,

we have the desired result. J§
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APPENDIX B. Proof of Theorem 3.6

(c) implies EKF nondivergent For the linearized EKF system

‘& = vE(x())E + Bu + H(t)[y-CE]. (B.1)
let
v(E.t) = 5 E'3 (0)E. (B.2) -
Then (B.2) implies

55 1817 <viee) <& 1e? (8.3)

and along trajectories of (B.1) with zero input (u.y#O)

dv(€.,t _
dt -

g3 0303 0)E + £ (0)E

N =

-3 £ 030037 (0F + €737 () vE(R(£))E — H(e)CE )

T

=af z‘l(c){-é(t) + vE(x(1))3(t) + I()vE(x(t)) — 2E(t)CTC2(t)}E—1(t)§

t\zl‘v-t

z“l(c){ = 4+ z(t)cTcz(c)}z‘l(t)g

<-1le [%]2 l€12. (B.4)
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Also, we have
Iavax“ELI $o (3711 IE| < = |g]. (B.5)

Since (B.3-B.5) hold for all £€R™, we can apply theorem 2.2 to
conclude that (B.1) is exponentially stable, i.e. there

existconstants A,M>0 such that trajectories of (B.1) obey

HOIRS NI (B.6)

for all initial conditions §(0)=f,, with u,y=0.

Thus, by theorem 2.3, (B.1) is uniformly L2

for all matrices B and all trajectories x. Now, we would like to

and L -stable (with §¢=0)

apply theorem 2.4 to conclude that the EKF is nondivergent, however,
since the EKF has a slightly different form than theorem 2.4 used,
due to the dependency of H on 2, we must prove it directly here.
Refering to theorem 2.4 for guidance will help.

We start with (B.1) being uniformly 1/0 stable, and °

x - ; = f(x) - f(;) - H(t)Ce + Bw - H(t)d

e
n

vE(x(t))e + g(x.e) - H(t)Ce - H(t)d + Bw (B.7)

and letting ¢ be the state transition matrix for (B.1),
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t A
e(t) = I o(t,7)[ - H(t)d + Bw + g(x,e) ] dr

0

t

= §(t) + I

o

o(t.7)g(x(7).e(7))dr. (B.8)
We can now finish the proof in the manner of theorem 2.4 to conclude
Ilell,r <k H(w.d)HT; VT€ER, ,w,d€L, (B.9)

which is the desired conclusion.

(b) implies (c) We use the following result of Bucy&Joseph [49,

chapter V] for linear time varying systems.

Lemma B.1 For the time-varying linear system [A(C+).B(+).C(*)] and

the associated Kalman filter

3(t) = A(£)3(t) + 3(t)AT(t) + E - 3(t)c(e) e(e)3(e), (B.10)

-~
p
Yt

if [A(+).C(+)] is uniformly observable, then for all

t>to+o, where o is the interval of observability, and

for all 34

3(t) < [Wi(t.t-0) + C(t.t-0)]. (B.11)
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(b) if [A(°).EI/2]-is uniformly controllable, then for all
t>tg+o, where o is the interval of observability, and

for all Z,,
-1 -1
[C "(t.t-0) + W(t,t-0)] = < Z(t) (B.12)

Proof see [49]. i

Now, since W and C are uniformly bounded by hypothesis across
all time-varying systems (i.e. for all x) we obtain uniform bounds on
3(t), and thus by (c), the EKF is nondivergent for ty<-o.
(a) implies (c) This is the hardest proof of the theorem; it is
also the most significant result. We proceed by a series of lemmas.
Readers not interested in the details can scan the lemmas for a

sketch of the proof. -

Lemma B.2 For all admissable trajectories z(+)€¥ that can be

achieved by
z(t) = £f(z(t)) + u(t); z(0)=0, (B.13)

where [f,C] is M-detectable, there exists a time-varying matrix H*(t)

that makes

E(t) = [vE(x(t)) - H(t)CIE(t) + v(t) (B.14)
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L,-stable, uniformly for all z(+), i.e. there exists k>0 such that

nEN, . < kv, ~ (B.15)

for all v,§ satisfying (B.14) and for all T€R,.

Proof Since the system [f,C] is M—detecfable, there must exist a
nondivergent estimator with associated functional H(*,+,+) and
continuity function n(e,T). Since, by definition, this estimator
must be nondivergent for all B matrices in the plant and the

estimator, with uniform gain k, we can select B=I. The estimator is

given by

L4
A

x(t) = £(x(t)) + u(t) + H(t, y(s).u(s).0<s<t)[y(t)-Cx(t)];

%(0)=0. (B.16)

For this proof, set d=0. Select an admissable pair u,z satisfying

(B.13) and define

x(t) = £(x(t)) + u(t) + w(t); x(0)=0 ~ (B.17a)
y(t) = C x(t), (B.17b)

Let v -
g(x(t).e(t)) = £(x(t)) - £(x(t)) - vE(X(t)) (B.18)
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in a manner similar to (A.2) of appendix A, where e=x-x is the

estimation error. The estimation error obeys

e(t) = [vE(x(t)) - H(t.y(s).u(s).0¢s<t)ICe(t) + g(x(t).e(t)) + w(t)
(B.19)

Fix T€R, and pick an arbitrary trajectory pair v,f for the linearized

system
E(t) = [vE(x(t)) - H(t.y(s).u(s).0¢s<t) JE(L) + v(t). (B.20)

We now compute the gain for the linearized system (B.20). Pick

e < (B.21)

1

k
and let

_8,(e)

- ngn,, r

(B.22)

where 6m(e) is the continuity function for g(+,) from (A.1). We now

select w so that
e(t) = v E(¢). (B.23)

The w we will need is thus determined by comparing (B.19) and (B.20)

and setting

w(t) = g(x(t).e(t)) + w(t). (B.24)
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Since

Heuw.T 4 wa"w.T < 6m(e) (B.25)
we have
1 k k ~
ngn, ;= el _ < ;;-Ilwllco . < ;-[ll'vv-g(x.e)llco T]
<k Wil + K el
© T o { © 7'
< k Hv“m’T + ke "§“w.7' (B.26)
Therefore
IEN ¢ 1 vl (B.27)
. T 1-ek L *

We now make use of the continuity of solutions of differential

equations with respect to parameter variations [79, p.29] to obtain

the desired final result. Let

H'(t) := H(t.Cz(s),u(s).0¢s<t). (B.28)

As we let e-0, we have pointwise in time, w=0, and thus

X >z (B.29)
y=Cx = Cz (B.30)
H(t,y(s).u(s).0¢s<t) » H'(t) (B.31)
X = x , (B.32)
vE(x(t)) = vE(z(t)) (B.33)
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with solutions of (B.20) satisfying (B.27) for all e>0. Therefore,
solutions of the limit equation (B.14) must obey (B.15) for v and for
all T€R,. Since the z(*) we originally picked was arbitrary, we are

done. B (Lemma B.2)

Lemma B.3 The time-varying system (B.14) is uniformly controllable,
with arbitrary interval of controllability, o, uniform across all

trajectories z.

Proof Let
Ap(t) = vE(x(t)) - H(t)C (B.34)
|Ap(e)| < N ~ (B.35)
where N exists by the bounds on vf and H*. Select a x,=R", with
|x,|=1 and let x be the trajectory from O to x; over o units of time:
x(t) = x,t/0 (B.36).

and v(t) must be -

x(t) = x,/0 = Ap(t)x(t) + v(t) . (B.37)
v(t) = [I - AL(t)t] x,/0, (B.38)
lv(e)| < (1+1N) |x, | (B.39)

Now, we also have that

xiTxi = x1Tx(to+a)

toto
I Xy P(tot+o,T)v(T)dT, (B.40)
to
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and by the Schwartz inequality

T toto T 2 1/2 toto - 172
Xy X4 < [ J |x, " ®(to+o, ) |“dt ] -[ J- v(r)dT ] (B.41)
to to

or, using the controllability grammian, C, we have

1 € x,7C(to. tota)x, = (14N) (B.42)
and thus

Clto. to*a) 2 Tox (B.43)

and since N is independent of ty,0, and z, we conclude that the

system (B.14) is uniformly controllable. H (lemma B.3)
Lemma B.4 A uniformly controllable time-varying system
E(t) = A(t) E(t) + B(t) u(t) (B.44)

is L -stable if and only if it is exponentially stable, i.e. there

exist A,M such that
[8(e) | < Mlgole™ (7 %0); £(e)=go. v=0. (B.45)

and

lo(t. to)| < M e M%) (B.46)
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where ¢ is the state transition matrix for (B.44). Furthermore, if
the output is considered to be y=C§, the system will be
exponentially stable if the additional constraint of uniform

observability is imposed.

Proof See [73]. For related material, see [74] for the linear
case, and [12] for a treatment of the general nonlinear case. B

(lemma B.4)

Lemma B.5 If A(t)-H*(t)C is exponentially stable, the covariance

propagation equation for the linear filter

.
A

E(t) = A(DE(E) + u(t) + K (6)[y(t)-CE(t)] (B.47)

driven by white noise with intensity Z, with unit intensity

observation noise, is bounded as follows.

It

$(t) = [A(t)-H(t)CIS(t) + S(t)[A(t)-H(t)C]T + E + H(t)H (t). (B.48)

implies

v

IS(e)] < [ So+ IEl & 18% ¢ 2t (B.49)

and

IS()] <L 1+ [E] 31N £y g + 22X(040 ISol)  (B.50)

where A,N are the constants of the exponential stability.
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Proof From standard linear theory [50]:

t
S(t) = B(t. te)SedT(t. to) +J o(t.1)EeT (¢, 1) dr. (B.51)
to

and we have

t
Is(t)| < SoN2-e 2M(t=to) |E|°N2'I e~ 2N (t-T) o

to
< S°N2.e-2)\(t—to) + |5|°N2 é_}\[ 1 - e—27\(t-—to)]
< SoNZee”2M(t-to) | |zy.p2 . (B.52)

From this we easily obtain the desired bounds. [ (lemma B.5)

Lemma B.6 The Kalman filter for the time-varying system in the last

lemma has a lower covariance than that given by (B.48).

Proof This is trivial as the Kalman Filter has the lowest
covariance at any time t2ty of any filter [50,75].

For a intuitive explanation, we have from (B.48

Nt

S(t)=A(£)S(t)+S(t)AT (e)+E+[H"(£)-s(t)CTILR(t)-s(t)cTIT-s(t)cTes(e).

(B.53)

The Kalman filter equation is
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$(t) = ACt)3(t) + 3(t)AT(¢) + E - 3(t)CTC3(e), (B.54)
and by comparing them, it is easy to see that

S(t) < S(t): Vtdto., 3(to)=S(to). (B.55)

B (lemma B.6)

Lemma B.7 2(t) in the EKF is uniformly bounded from above for
t2to+o, where o depends on the initial condition 2(ty)=3,. This is
independent of the noises, controls, etc.

Proof From the last lemma, 3(t) is bounded by S(t), which is
bounded from above. Since the bounds on S(t) are uniform for all

trajectories x, and all u,w, and d, we have the desired result.

B (lemma B.7)

Lemma B.8 3(t) in the EKF- is bounded from below for t2tg+oc if the

system is uniformly controllable.
Proof From the lemma B.1, we'have
[C (to. tota) + W(to.tota)T L < 3(t); tdtota. (B.56)

As mentioned previously, W has an upper bound because A(t)=vf(x(t))

is bounded. We shall compute that bound. Let
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E(t)

A(t)E(t); E(to)=bo (B.57)

or

§(¢)

t
Eo + J; A(T)E(T)dr. - (B.58)

Using the Bellman-Gronwall Inequality [8], we get

t
HOIESIN exp{ft A(r)dr}. Vedto
o

< |go| eM(tto), (B.59)
where
IACt) | = |vE(x(t))] < M. (B.60)
Therefore
®(t.tg) ¢ e M(t-to) (B.61)
and
) toto o T
W(to.toto) = J ¢ (7,to+0)C CI(T, toto)dr
to
¢lef [ oAMetem) g
to
< g [ 1 - e 2oy
1
$ o (B.62)
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Therefore,

-1 ga-1 1 1 1
o . [C"+W] ~ = 2 2

1 g T 1
min o [C +¥] I+ Wl I+ 5

1 oM

= 1 T2 3ai + 1 (B.63)
* o
amin[C]

where a is the constant of uniform controllability. Thus Z(t) is

bounded from below for t)to+o, by (B.61) and (B.62). [ (lemma B.8)
Lemma B.9 We now finally conclude that the EKF is nondivergent.

Proof 3(t) is bounded from above and below, and we can use (c) of

the theorem. J (lemma B.9)

B (End of Proof of theorem 3.6)
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APPENDIX C. The Costate Observer

In this appendix we will discuss a possibility for nonlinear
estimation which appears to bé new. We call it the costate observer.
Because it has not been fully developed, we can only give an overview
of the observer, with some of its guaranteed properties.

We first present the defining equations for the costate obsérver

for the nonlinear system

x(t)
y(t)

£(x(t)) + B u(t) (C.1)

C x(t). (C.2)

Let S:R™R,, with Sx=[68/6x]T. and Sxx the matrix of second partials,

satisfy the partial differential equation:

T.T

0=5pcicr —p's (p)E(p) — 55 T(p)ES (p). (c.3)

Nfr=

The state estimate is given by

*
A

x(t) = £(x(t)) + B u(t) + HX)[y(t)=Cx(t)] (C.4)

where
H(x) := S~ '(ocl. (C.5)
We see that the estimate equation (C.4) is a model-based estimate, as

we would expect, similar to the optimal filter, the EKF, and the
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CGEKF. The equation for the costate observer (C.3) comes from the
HJB equation via a state variable transformation, where we let
Sx(p)=x and Vx(x)=p. i.e. so that Vx(Sx(p))=p Vp. If we then
transform the closed-loopvstate equations, we see that we need to
make a simple modification to obtain what resembles observer
dynamics. ‘While this is the original motivation for the costate
;bserver.‘it seems to stand on its own, with some properties that can

be shown without reference to the HJB equation:

Theorem C.1 (Guaranteed Properties of the Costate Observer) Assume
that a solution to (C.3) exists. Let H be the operator defined by
Hy := H(;)y, in a similar manner to the way we handled the EKF
time-varying gain. Then the following hold with respect to the
filter loop, as shown in figure 3-2 with H(t) replaced with H with

CPH:umy defined by

He
"

f(x) + H(x)u (C.6a)

.- y =Cx (C.6b)

(a) Return Difference Condition

N[I+COHTull,

2 1; Yu€¥, uzO, T€R,. (C.7)

"u"2.1
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(b) Other Robustness Properties

ICEH[ T+COH] ull, _

< 2; Vu€®, uz0, T€R,. (C.8)

Hu"2.T

NLI+(CoH) ™ Jun,

2 %; Yu€?, uz0, T€R,. (C.9)
flull ’

2,7

(c) Robustness Margins

The closed-loop system has -6dB to +» multivariable gain margin and
-60 to +60 degrees of multivariable phase margin at the input to H,
i.e. the loop CPH is robust.

(d) Closed-loop Stability

nI+ceH] n, < 1 (C.10)
and - |

NCoHLT+cen] M, < 2, (C.11)
i.e. the closed-loop system is L2—stab1e.

(e) L2—domain inequality

2 2 =172 2
ULI+COHTuNy > Mully _ + WE™/“S oHuly _ (C.12)

Proof The proof is carried out in a manner analogous to that of

theorem 3.17. Let V be the function such that Vx(Sx(x))=x. Then
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av(s, (x))
dt

= x's_ [£(x)+H(x)w] = x'S,_ £(x) + x1Cly. (C.13)

and

T
I [ww+S_'ES ] dt
o x T x

- [ ot + afdex - 25 e (0T a

[s)

nT

= | { [wrcx]T[weCx] - 2w'Cx - 2x'S__ (x)£(x) } dt

= . { [wCx] [w+Cx] - 2V } de

T

= | [w+Cx] [w+Cx] dt - [V(S, (x(T)) - V(S (x(0))]. (C.14)

Since we start at x(0)=0 and V20, we have result (a). The others
follow in a manner completeiy analogous to theorem 3.17. [§

Remark These results.are all completely dual to those of the
optimal regulator (theorem 3.17). Thus it seems to be a good choice
for an observer. However, we are missing one crucial property for
the costate observer: incremental stability. From chapter 2 we know
that this is a crucial property for a nondivergent estimator to have.
Consider the observer equation (C.4). We know from the above results

that, roughly, this equation is stable from (u,y)»x. We simply need
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to upgrade to incrémental stability in order to get nondivergence of
the estimate. At this point no conditions are known that guarantee
this property for the costate observer. It seems likely that this is
linked to the incremental stability of solutions to the HJB eqaution,
and that results should flow easily between the two, éiven their
common form. There have been some results reported [67,68] on the
incremental properties (called second-variation results) of the HJB
equation, but they hold only along trajectories with zero input. We
caﬁhot say much about the incremental stability around other
trajectories.

Thus it seems that the costate observer has many interesting
properties, and seems to hold some potential as an observer which may
be the "true"” dual to the Hamilton-Jacobi-Bellman equation of optimal

control theory.
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APPENDIX D. Guaranteed Properties of the Optimal Filter

Theorem D.1 For the optimal deterministic filter, described by the
equations
1, T

2V (D.1)

Ve = 5 Yy &V

¢ = % [y-CXJT[y-C.XJ - Vfo (x) -

;(t) = argmin V(x, t) (D.2)
X

where V(x,0)20, V(0,0)=0, and V is differentiable, let y=Cx and

v=y-y. Then the following "return difference condition"” holds
Hv+y“2'T 2 "v"2,7 ; Vy€s, T€R, . - (D.3)

Proof Since V is differentiable, Vx(x(t).t)=0, and thus we have

dv xd: .t - vt(;(t)'t) + Vx(;(t),t);(t) = Vt(;(t).t))
= %[y-;;]T[y-;] (D-4)
and
dVd((z,t) - %yTy' (D.5)
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since f(0)=0. Thus we have

2 “nl

yiy = lveylly = V(0,7) - V(0,0) =V(0,7) (D.6)
and
y=yn2 = Hvﬂg.T = V(x(1).7) - V(x(0).0) (D.7)

~

and thus by the minimization property of x, we have

vyl

2. (D.8)

V(x(1).7) = IVIZ _ + V(x(0).0) < V(0.7)
and since V20, we have the desired result. H

Remark This return difference property is very similar to the
properties possessed by the extended Kalman filter, the costate
observer, and the optimal regulator, as discussed in section 3.3.4,
appendix C, and section 3.4.3, respectively. It is unclear exactly
what this result implies for robustness margins of the optimal
filter; it seems likely that it possesses- the same margins as the

above mentioned loops.
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APPENDIX E. Factorization Ideas

In this section, we will discuss some of the factorization ideas

[71] as they might relate to nonlinear systems. The
Q-parameterization [27,28] we discussed under formal loop shaping was
a basic form of factorization. In [27,28] the set of compensators
stabilizing a given incrementally stable plant is parameterized
(by Q). The factorization éf [71] is more general and deals with
possibly unstable linear plants. Suppose we have a plant given by
P=C¢B and we can find a stabilizing state feedback function G, i.e.
so that

(¢~ '4Bc]"!B = eB[I+ceB] !, (E.1)
and

[1+coB] ! (E.2)
are stable. Then we can find a right-factorization of P into two

stable operators N, D:

la <]
[
Tl
~~
m
(93]
-

They are given by
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CeB[ I+GoB] * (E.4)

=2
I

=)
]

[I+GeB] L. o (E.5)

We would like to show that this is a right-coprime factorization, but
this may require some additional assumptions. See [71] for the
linear case and [32] for a nonlinear discussion.

We now consider the left-factorization. Supﬁose we have a
nondivergent model-based filter with gain H for our plant P. In the
standard filtering formulation that we have been using, let u,d=0.
Then

[1+CoH] lceB (E.6)

o2
1]

[I+C¢H]'1 (E.7)

=
I

are both stable. D is easy; N is stable because
u[1+c¢H]"lc¢Bqu = lly - Cxll_ = IC(x-x)l_ { k |c| lwll_. (E.8)

We have . e

P=D N, (E.9)

and thus we have a left factorization (coprime?) for our plant.
Perhaps it will be possible to use these factorizations to completely

parameterize the set of compensators that will stabilize an arbitrary

plant.
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APPENDIX F. State Feedback Servos

In this section we will present a short description of the state
feedback servo, in which a state feedback system is turned into a

command following system.
Suppose that we have our plant

x = f(x) + B u, ' (F.1)

where we have partitioned the state vector so that

X = [ i ] (F.2)

and a stabilizing state feedback function g(x) = Gx. Now, suppose
that we wish to use this feedback function G to create a command

following system. We might try to use an input to our system (F.1)
u = g(x + Dr)

‘where r is a command reference input and

D = [é].
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The system shown in figure F-1 shows this setup for the case where we

can decompose G so that

g(x) = Gx = ny + Grr.

(F.3)

The result that follows does not rely on this decomposition, but it

does make the block diagram easier to compare with the linear case.

Theorem F.1 (State Feedback Servo Stability)

If the function g is Lipschitz in y, i.e.
le(ys.x)-glyz.x )| <M lyi-yal.
then the closed-loop system with u=g(x+Dr) is I/O stable.
Proof We have -
x = £(x) - B g(x+Dr) = £(x) - B g(x) + B[g(x)-g(x+Dr)]
and so

HxHT < lg(x)-g(x+Dr)ll < M HrHT. |

(F.4)

(F.5)

(F.6)

Note that the Lipshitz condition means that gy is Lipshitz if we

use the decomposition (F.3).
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Xr

Figure F-1: State Feedback Servo
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Remark The state feedback servo suffers from the same problems as
its linear counterpart, the LQ servo. Note that we might have very
good robustness and performance at the loop breaking point (i) in
figure Ffl, say if g came from an optimal regulator problem, but that
the actual performance loop, point (ii), might be terrible. This
concept is related to the discussion in section 4.6 where the
two-step compensation methods were shown to have problems in terms of

shaping the loops that are truly important. -
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